1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
import geopandas as gpd
import numpy as np
import shapely
from geopandas import GeoDataFrame, GeoSeries
from numpy.typing import NDArray
from packaging.version import Version
from pandas import DataFrame, MultiIndex, Series
from momepy.functional import _dimension
__all__ = [
"form_factor",
"fractal_dimension",
"facade_ratio",
"circular_compactness",
"square_compactness",
"convexity",
"courtyard_index",
"rectangularity",
"shape_index",
"corners",
"squareness",
"equivalent_rectangular_index",
"elongation",
"centroid_corner_distance",
"linearity",
"compactness_weighted_axis",
]
GPD_013 = Version(gpd.__version__) >= Version("0.13")
def form_factor(
geometry: GeoDataFrame | GeoSeries,
height: NDArray[np.float64] | Series,
) -> Series:
"""Calculates the form factor of each object given its geometry and height.
.. math::
surface \\over {volume^{2 \\over 3}}
where
.. math::
surface = (perimeter * height) + area
Adapted from :cite:`bourdic2012`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
height : NDArray[np.float64] | Series
array of heights
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
Synthesize some building height information.
>>> import numpy as np
>>> rng = np.random.default_rng(seed=42)
>>> height = rng.integers(low=9, high=30, size=len(buildings))
>>> momepy.form_factor(buildings, height)
0 5.588952
1 8.403204
2 5.149302
3 5.381587
4 5.030861
...
139 6.039771
140 5.904980
141 5.508910
142 5.869335
143 5.378663
Name: form_factor, Length: 144, dtype: float64
"""
area = geometry.area
volume = area * height
surface = (geometry.length * height) + geometry.area
zeros = volume == 0
res = np.empty(len(geometry))
res[zeros] = np.nan
res[~zeros] = surface[~zeros] / (volume[~zeros] ** (2 / 3))
return Series(res, index=geometry.index, name="form_factor")
def fractal_dimension(
geometry: GeoDataFrame | GeoSeries,
) -> Series:
"""Calculates fractal dimension based on area and perimeter.
.. math::
{2log({{perimeter} \\over {4}})} \\over log(area)
Based on :cite:`mcgarigal1995fragstats`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.fractal_dimension(buildings)
0 1.072678
1 1.182350
2 1.018422
3 1.048314
4 1.017328
...
139 1.014975
140 1.033581
141 1.064103
142 1.022617
143 1.000008
Length: 144, dtype: float64
"""
return (2 * np.log(geometry.length / 4)) / np.log(geometry.area)
def facade_ratio(
geometry: GeoDataFrame | GeoSeries,
) -> Series:
"""
Calculates the facade ratio of each object given its geometry.
.. math::
area \\over perimeter
Adapted from :cite:`schirmer2015`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.facade_ratio(buildings)
0 5.310716
1 11.314008
2 5.963959
3 6.376086
4 5.987687
...
139 1.868981
140 4.046407
141 5.963454
142 1.711740
143 2.734681
Length: 144, dtype: float64
"""
return geometry.area / geometry.length
def circular_compactness(geometry: GeoDataFrame | GeoSeries) -> Series:
"""Calculates the circular compactness of each object given its geometry.
.. math::
area \\over \\textit{area of enclosing circle}
Adapted from :cite:`dibble2017`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.circular_compactness(buildings)
0 0.572145
1 0.390417
2 0.588332
3 0.520411
4 0.591297
...
139 0.563433
140 0.525733
141 0.404872
142 0.530405
143 0.636387
Length: 144, dtype: float64
"""
return geometry.area / (
np.pi * shapely.minimum_bounding_radius(geometry.geometry.array) ** 2
)
def square_compactness(geometry: GeoDataFrame | GeoSeries) -> Series:
"""Calculates the square compactness of each object given its geometry.
.. math::
\\begin{equation*}
\\left(\\frac{4 \\sqrt{area}}{perimeter}\\right) ^ 2
\\end{equation*}
Adapted from :cite:`feliciotti2018`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.square_compactness(buildings)
0 0.619387
1 0.182604
2 0.887750
3 0.719750
4 0.894034
...
139 0.940666
140 0.824085
141 0.647576
142 0.914813
143 0.999961
Length: 144, dtype: float64
"""
return ((np.sqrt(geometry.area) * 4) / geometry.length) ** 2
def convexity(geometry: GeoDataFrame | GeoSeries) -> Series:
"""Calculates the convexity of each object given its geometry.
.. math::
\\frac{\\textit{area}}{\\textit{area of convex hull}}
Adapted from :cite:`dibble2017`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.convexity(buildings)
0 0.815196
1 0.703008
2 0.953398
3 0.890489
4 0.957323
...
139 1.000000
140 0.904176
141 0.795774
142 1.000000
143 1.000000
Length: 144, dtype: float64
"""
return geometry.area / geometry.geometry.convex_hull.area
def courtyard_index(
geometry: GeoDataFrame | GeoSeries,
courtyard_area: NDArray[np.float64] | Series | None = None,
) -> Series:
"""Calculates the courtyard index of each object given its geometry.
.. math::
\\textit{area of courtyards} \\over \\textit{total area}
Adapted from :cite:`schirmer2015`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
courtyard_area : NDArray[np.float64] | Series | None, optional
array of courtyard areas. If None, it will be calculated, by default None
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> ci = momepy.courtyard_index(buildings)
>>> ci
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
...
139 0.0
140 0.0
141 0.0
142 0.0
143 0.0
Length: 144, dtype: float64
>>> ci.max()
np.float64(0.16605915738643523)
If you know the courtyard area, you can pass it to skip the computation step.
>>> courtyard_area = momepy.courtyard_area(buildings)
>>> momepy.courtyard_index(buildings, courtyard_area=courtyard_area)
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
...
139 0.0
140 0.0
141 0.0
142 0.0
143 0.0
Length: 144, dtype: float64
"""
if courtyard_area is None:
courtyard_area = _dimension.courtyard_area(geometry)
return courtyard_area / geometry.area
def rectangularity(geometry: GeoDataFrame | GeoSeries) -> Series:
"""Calculates the rectangularity of each object given its geometry.
.. math::
\\frac{\\textit{area}}{\\textit{area of minimum bounding rectangle}}
Adapted from :cite:`dibble2017`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.rectangularity(buildings)
0 0.694268
1 0.702242
2 0.901582
3 0.821797
4 0.912858
...
139 0.996876
140 0.820865
141 0.659281
142 0.971600
143 0.999400
Length: 144, dtype: float64
"""
return geometry.area / shapely.area(
shapely.minimum_rotated_rectangle(geometry.geometry.array)
)
def shape_index(
geometry: GeoDataFrame | GeoSeries,
longest_axis_length: NDArray[np.float64] | Series | None = None,
) -> Series:
"""Calculates the shape index of each object given its geometry.
.. math::
{\\sqrt{{area} \\over {\\pi}}} \\over {0.5 * \\textit{longest axis}}
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
longest_axis_length : NDArray[np.float64] | Series | None, optional
array of longest axis lengths. If None, it will be calculated, by default None
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.shape_index(buildings)
0 0.756403
1 0.624834
2 0.767028
3 0.721395
4 0.768958
...
139 0.750622
140 0.725074
141 0.636296
142 0.728289
143 0.797739
Length: 144, dtype: float64
If you know the longest axis length, you can pass it to skip the computation step.
>>> lal = momepy.longest_axis_length(buildings)
>>> momepy.shape_index(buildings, longest_axis_length=lal)
0 0.756403
1 0.624834
2 0.767028
3 0.721395
4 0.768958
...
139 0.750622
140 0.725074
141 0.636296
142 0.728289
143 0.797739
Length: 144, dtype: float64
"""
if longest_axis_length is None:
longest_axis_length = _dimension.longest_axis_length(geometry)
return np.sqrt(geometry.area / np.pi) / (0.5 * longest_axis_length)
def corners(
geometry: GeoDataFrame | GeoSeries,
eps: float = 10,
include_interiors: bool = False,
) -> Series:
"""Calculates the number of corners of each object given its geometry.
As a corner is considered a point where the angle between two consecutive segments
deviates from 180 degrees by more than ``eps``.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
eps : float, optional
Deviation from 180 degrees to consider a corner, by default 10
include_interiors : bool, optional
If True, polygon interiors are included in the calculation. If False, only
exterior is considered, by default False
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.corners(buildings)
0 24
1 43
2 8
3 16
4 8
..
139 4
140 6
141 6
142 4
143 4
Length: 144, dtype: int64
"""
if not GPD_013:
raise ImportError("momepy.corners requires geopandas 0.13 or later. ")
def _count_corners(points: DataFrame, eps: float) -> int:
pts = points.values[:-1]
true_angles = _true_angles_mask(pts, eps=eps)
corners = np.count_nonzero(true_angles)
return corners
if include_interiors:
coords = geometry.reset_index(drop=True).get_coordinates(index_parts=False)
else:
coords = geometry.reset_index(drop=True).exterior.get_coordinates(
index_parts=False
)
cc = coords.groupby(level=0).apply(_count_corners, eps=eps)
cc.index = geometry.index
return cc
def squareness(
geometry: GeoDataFrame | GeoSeries,
eps: float = 10,
include_interiors: bool = False,
) -> Series:
"""Calculates the squareness of each object given its geometry.
Squareness is a mean deviation of angles at corners from 90 degrees.
As a corner is considered a point where the angle between two consecutive segments
deviates from 180 degrees by more than ``eps``.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
eps : float, optional
Deviation from 180 degrees to consider a corner, by default 10
include_interiors : bool, optional
If True, polygon interiors are included in the calculation. If False, only
exterior is considered, by default False
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.squareness(buildings)
0 3.707582
1 2.990318
2 0.437987
3 4.573564
4 0.382146
...
139 0.214733
140 0.307916
141 0.343259
142 0.899731
143 0.028140
Length: 144, dtype: float64
"""
if not GPD_013:
raise ImportError("momepy.squareness requires geopandas 0.13 or later. ")
def _squareness(points: DataFrame, eps: float):
pts = points.values[:-1]
true_angles, degrees = _true_angles_mask(pts, eps=eps, return_degrees=True)
return np.nanmean(np.abs(90 - degrees[true_angles]))
if include_interiors:
coords = geometry.reset_index(drop=True).get_coordinates(index_parts=False)
else:
coords = geometry.reset_index(drop=True).exterior.get_coordinates(
index_parts=False
)
sq = coords.groupby(level=0).apply(_squareness, eps=eps)
sq.index = geometry.index
return sq
def equivalent_rectangular_index(geometry: GeoDataFrame | GeoSeries) -> Series:
"""Calculates the equivalent rectangular index of each object given its geometry.
.. math::
\\sqrt{{area} \\over \\textit{area of bounding rectangle}} *
{\\textit{perimeter of bounding rectangle} \\over {perimeter}}
Based on :cite:`basaraner2017`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.equivalent_rectangular_index(buildings)
0 0.787923
1 0.443137
2 0.954252
3 0.851658
4 0.957543
...
139 1.000050
140 0.907837
141 0.813269
142 0.995926
143 0.999999
Length: 144, dtype: float64
"""
bbox = shapely.minimum_rotated_rectangle(geometry.geometry.array)
return np.sqrt(geometry.area / shapely.area(bbox)) * (
shapely.length(bbox) / geometry.length
)
def elongation(geometry: GeoDataFrame | GeoSeries) -> Series:
"""Calculates the elongation of each object given its geometry.
The elongation is defined as the elongation of the minimum bounding rectangle.
.. math::
{{p - \\sqrt{p^2 - 16a}} \\over {4}} \\over
{{{p} \\over {2}} - {{p - \\sqrt{p^2 - 16a}} \\over {4}}}
where `a` is the area of the object and `p` its perimeter.
Based on :cite:`gil2012`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.elongation(buildings)
0 0.908244
1 0.581318
2 0.726527
3 0.838840
4 0.727294
...
139 0.608004
140 0.979998
141 0.747326
142 0.564060
143 0.987953
Name: elongation, Length: 144, dtype: float64
"""
bbox = shapely.minimum_rotated_rectangle(geometry.geometry.array)
a = shapely.area(bbox)
p = shapely.length(bbox)
sqrt = np.maximum(p**2 - 16 * a, 0)
elo1 = ((p - np.sqrt(sqrt)) / 4) / ((p / 2) - ((p - np.sqrt(sqrt)) / 4))
elo2 = ((p + np.sqrt(sqrt)) / 4) / ((p / 2) - ((p + np.sqrt(sqrt)) / 4))
res = np.where(elo1 <= elo2, elo1, elo2)
return Series(res, index=geometry.index, name="elongation")
def centroid_corner_distance(
geometry: GeoDataFrame | GeoSeries,
eps: float = 10,
include_interiors: bool = False,
) -> DataFrame:
"""Calculates the centroid-corner distance of each object given its geometry.
As a corner is considered a point where the angle between two consecutive segments
deviates from 180 degrees by more than ``eps``.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
eps : float, optional
Deviation from 180 degrees to consider a corner, by default 10
include_interiors : bool, optional
If True, polygon interiors are included in the calculation. If False, only
exterior is considered, by default False
Returns
-------
DataFrame
DataFrame with columns 'mean' and 'std'
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.centroid_corner_distance(buildings).head()
mean std
0 15.961532 3.081063
1 58.763388 22.922368
2 14.988106 3.648731
3 15.000439 4.999226
4 14.965557 3.660826
"""
if not GPD_013:
raise ImportError(
"momepy.centroid_corner_distance requires geopandas 0.13 or later. "
)
result_index = geometry.index
if isinstance(geometry.index, MultiIndex):
geometry = geometry.reset_index(drop=True)
def _ccd(points: DataFrame, eps: float) -> Series:
centroid = points.values[0, 2:]
pts = points.values[:-1, :2]
true_angles = _true_angles_mask(pts, eps=eps)
dists = np.linalg.norm(pts[true_angles] - centroid, axis=1)
return Series({"mean": np.nanmean(dists), "std": np.nanstd(dists)})
if include_interiors:
coords = geometry.get_coordinates(index_parts=False)
else:
coords = geometry.exterior.get_coordinates(index_parts=False)
coords[["cent_x", "cent_y"]] = geometry.centroid.get_coordinates(index_parts=False)
ccd = coords.groupby(level=0).apply(_ccd, eps=eps)
ccd.index = result_index
return ccd
def linearity(geometry: GeoDataFrame | GeoSeries) -> Series:
"""Calculates the linearity of each LineString
The linearity is defined as the ratio of the length of the segment between the first
and last point to the length of the LineString. While other geometry types are
accepted, the result is not well defined.
.. math::
\\frac{l_{euclidean}}{l_{segment}}
where `l` is the length of the LineString.
Adapted from :cite:`araldi2019`.
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing lines to analyse.
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> streets = geopandas.read_file(path, layer="streets")
>>> momepy.linearity(streets).head()
0 1.000000
1 0.995987
2 0.999653
3 0.999997
4 1.000000
dtype: float64
"""
return (
shapely.distance(
shapely.get_point(geometry.geometry.array, 0),
shapely.get_point(geometry.geometry.array, -1),
)
/ geometry.length
)
def compactness_weighted_axis(
geometry: GeoDataFrame | GeoSeries,
longest_axis_length: NDArray[np.float64] | Series | None = None,
) -> Series:
"""Calculates the compactness-weighted axis of each object in a given GeoDataFrame.
.. math::
d_{i} \\times\\left(\\frac{4}{\\pi}-\\frac{16 (area_{i})}
{perimeter_{i}^{2}}\\right)
Parameters
----------
geometry : GeoDataFrame | GeoSeries
A GeoDataFrame or GeoSeries containing polygons to analyse.
longest_axis_length : NDArray[np.float64] | Series | None, optional
array of longest axis lengths. If None, it will be calculated, by default None
Returns
-------
Series
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> momepy.compactness_weighted_axis(buildings)
0 26.327730
1 208.588747
2 14.358370
3 26.026429
4 14.095118
...
139 3.853623
140 12.462700
141 32.888900
142 3.975422
143 4.228395
Length: 144, dtype: float64
If you know the longest axis length, you can pass it to skip the computation step.
>>> lal = momepy.longest_axis_length(buildings)
>>> momepy.compactness_weighted_axis(buildings, longest_axis_length=lal)
0 26.327730
1 208.588747
2 14.358370
3 26.026429
4 14.095118
...
139 3.853623
140 12.462700
141 32.888900
142 3.975422
143 4.228395
Length: 144, dtype: float64
"""
if longest_axis_length is None:
longest_axis_length = _dimension.longest_axis_length(geometry)
return longest_axis_length * (
(4 / np.pi) - (16 * geometry.area) / (geometry.length**2)
)
# helper functions
def _true_angles_mask(
points: NDArray[np.float64], eps: float, return_degrees: bool = False
) -> NDArray[np.bool_] | tuple[NDArray[np.bool_], NDArray[np.float64]]:
"""Calculates the mask of true angles.
Parameters
----------
points : NDArray[np.float64]
array of points
eps : float
Deviation from 180 degrees to consider a corner
return_degrees : bool, optional
If True, returns also degrees, by default False
Returns
-------
NDArray[np.bool_] | tuple[NDArray[np.bool_], NDArray[np.float64]]
boolean array or a tuple of boolean array and float array of degrees
"""
a = np.roll(points, 1, axis=0)
b = points
c = np.roll(points, -1, axis=0)
ba = a - b
bc = c - b
cosine_angle = np.sum(ba * bc, axis=1) / (
np.linalg.norm(ba, axis=1) * np.linalg.norm(bc, axis=1)
)
angles = np.arccos(cosine_angle)
degrees = np.degrees(angles)
if return_degrees:
return np.logical_or(degrees <= 180 - eps, degrees >= 180 + eps), degrees
return np.logical_or(degrees <= 180 - eps, degrees >= 180 + eps)
|