File: test_distribution.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (270 lines) | stat: -rw-r--r-- 10,226 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import geopandas as gpd
from libpysal.graph import Graph
from pandas.testing import assert_series_equal

import momepy as mm

from .conftest import assert_result


class TestDistribution:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
        self.graph = Graph.build_knn(self.df_buildings.centroid, k=5)
        self.contiguity = Graph.build_contiguity(self.df_buildings)
        self.neighborhood_graph = self.graph.higher_order(3, lower_order=True)
        self.tess_contiguity = Graph.build_contiguity(self.df_tessellation)

    def test_orientation(self):
        expected = {
            "mean": 20.983859394267952,
            "sum": 3021.6757527745854,
            "min": 7.968673890244247,
            "max": 42.329365250279125,
        }
        r = mm.orientation(self.df_buildings)
        assert_result(r, expected, self.df_buildings, rel=1e-4)

        expected = {
            "mean": 21.176405050561755,
            "sum": 741.1741767696615,
            "min": 0.834911325974133,
            "max": 44.83357900046826,
        }
        r = mm.orientation(self.df_streets)
        assert_result(r, expected, self.df_streets)

    def test_shared_walls(self):
        expected = {
            "mean": 36.87618331446485,
            "sum": 5310.17039728293,
            "min": 0,
            "max": 106.20917523555639,
        }
        r = mm.shared_walls(self.df_buildings)
        assert_result(r, expected, self.df_buildings)

    def test_shared_walls_approx(self):
        expected = {
            "mean": 36.87618331446485,
            "sum": 5310.17039728293,
            "min": 0,
            "max": 106.20917523555639,
        }
        tolerance = 0.1
        geometry = self.df_buildings.buffer(-tolerance)
        r = mm.shared_walls(geometry)
        assert (r == 0).all()

        r = mm.shared_walls(geometry, strict=False, tolerance=tolerance + 0.001)

        # check that values are equal to strict version up to 10cm
        assert_result(r, expected, self.df_buildings, rel=1e-1)

    def test_alignment(self):
        orientation = mm.orientation(self.df_buildings)
        expected = {
            "mean": 2.90842367974375,
            "sum": 418.8130098831,
            "min": 0.03635249292455285,
            "max": 21.32311946014944,
        }
        r = mm.alignment(orientation, self.graph)
        assert_result(r, expected, self.df_buildings, check_names=False, rel=1e-4)

    def test_neighbor_distance(self):
        expected = {
            "mean": 14.254601392635818,
            "sum": 2052.662600539558,
            "min": 2.0153493186952085,
            "max": 42.164831456311475,
        }
        r = mm.neighbor_distance(self.df_buildings, self.graph)
        assert_result(r, expected, self.df_buildings, check_names=False)

    def test_mean_interbuilding_distance(self):
        expected = {
            "mean": 13.018190603684694,
            "sum": 1874.6194469305958,
            "min": 6.623582625492466,
            "max": 22.513464171665948,
        }
        r = mm.mean_interbuilding_distance(
            self.df_buildings, self.graph, self.neighborhood_graph
        )
        assert_result(r, expected, self.df_buildings)

    def test_building_adjacency(self):
        expected = {
            "mean": 0.3784722222222222,
            "sum": 54.5,
            "min": 0.16666666666666666,
            "max": 0.8333333333333334,
        }
        r = mm.building_adjacency(self.contiguity, self.graph)
        assert_result(r, expected, self.df_buildings, exact=False)

    def test_neighbors(self):
        expected = {
            "mean": 5.180555555555555,
            "sum": 746,
            "min": 2,
            "max": 12,
        }
        r = mm.neighbors(self.df_tessellation, self.tess_contiguity, weighted=False)
        assert_result(r, expected, self.df_buildings, exact=False, check_names=False)

        expected = {
            "mean": 0.029066398893536072,
            "sum": 4.185561440669194,
            "min": 0.008659386154613532,
            "max": 0.08447065801729325,
        }
        r = mm.neighbors(self.df_tessellation, self.tess_contiguity, weighted=True)
        assert_result(r, expected, self.df_buildings, exact=False, check_names=False)

    def test_street_alignment(self):
        building_orientation = mm.orientation(self.df_buildings)
        street_orientation = mm.orientation(self.df_streets)
        street_index = mm.get_nearest_street(self.df_buildings, self.df_streets)
        expected = {
            "mean": 2.024707906317863,
            "sum": 291.5579385097722,
            "min": 0.0061379200252815,
            "max": 20.357934749623894,
        }
        r = mm.street_alignment(building_orientation, street_orientation, street_index)
        assert_result(r, expected, self.df_buildings, rel=1e-3)

    def test_cell_alignment(self):
        df_buildings = self.df_buildings.reset_index()
        df_tessellation = self.df_tessellation.reset_index()
        blgori = mm.orientation(df_buildings)
        tessori = mm.orientation(df_tessellation)

        align = mm.cell_alignment(blgori, tessori)
        align2 = mm.cell_alignment(blgori.values, tessori.values)
        align_expected = {
            "count": 144,
            "mean": 2.604808585700,
            "max": 33.201625570390746,
            "min": 1.722848278973288e-05,
        }
        assert_result(align, align_expected, df_buildings, abs=1e-2)
        assert_series_equal(align, align2, check_names=False)


class TestEquality:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings").set_index(
            "uID"
        )
        self.df_tessellation = gpd.read_file(
            test_file_path, layer="tessellation"
        ).set_index("uID")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.graph = Graph.build_knn(self.df_buildings.centroid, k=5)
        self.df_buildings["orientation"] = mm.orientation(self.df_buildings)
        self.df_streets["orientation"] = mm.orientation(self.df_streets)
        self.contiguity = Graph.build_contiguity(self.df_buildings)
        self.tessellation_contiguity = Graph.build_contiguity(self.df_tessellation)
        self.neighborhood_graph = self.tessellation_contiguity.higher_order(
            3, lower_order=True
        )

    def test_alignment(self):
        new = mm.alignment(self.df_buildings["orientation"], self.graph)
        old = mm.Alignment(
            self.df_buildings.reset_index(),
            self.graph.to_W(),
            "uID",
            "orientation",
            verbose=False,
        ).series
        assert_series_equal(new, old, check_names=False, check_index=False)

    def test_neighbor_distance(self):
        new = mm.neighbor_distance(self.df_buildings, self.graph)
        old = mm.NeighborDistance(
            self.df_buildings.reset_index(), self.graph.to_W(), "uID", verbose=False
        ).series
        assert_series_equal(new, old, check_names=False, check_index=False)

    def test_mean_interbuilding_distance(self):
        new = mm.mean_interbuilding_distance(
            self.df_buildings, self.tessellation_contiguity, self.neighborhood_graph
        )
        old = mm.MeanInterbuildingDistance(
            self.df_buildings.reset_index(),
            self.tessellation_contiguity.to_W(),
            "uID",
            verbose=False,
        ).series
        assert_series_equal(new, old, check_names=False, check_index=False)

    def test_building_adjacency(self):
        new = mm.building_adjacency(self.contiguity, self.graph)
        old = mm.BuildingAdjacency(
            self.df_buildings.reset_index(), self.graph.to_W(), "uID", verbose=False
        ).series
        assert_series_equal(new, old, check_names=False, check_index=False)

    def test_neighbors(self):
        new = mm.neighbors(
            self.df_tessellation, self.tessellation_contiguity, weighted=False
        )
        old = mm.Neighbors(
            self.df_tessellation.reset_index(),
            self.tessellation_contiguity.to_W(),
            "uID",
            weighted=False,
            verbose=False,
        ).series
        assert_series_equal(new, old, check_names=False, check_index=False)

        new = mm.neighbors(
            self.df_tessellation, self.tessellation_contiguity, weighted=True
        )
        old = mm.Neighbors(
            self.df_tessellation.reset_index(),
            self.tessellation_contiguity.to_W(),
            "uID",
            weighted=True,
            verbose=False,
        ).series
        assert_series_equal(new, old, check_names=False, check_index=False)

    def test_street_alignment(self):
        street_index = mm.get_nearest_street(self.df_buildings, self.df_streets)
        self.df_buildings["nID"] = street_index
        new = mm.street_alignment(
            self.df_buildings["orientation"],
            self.df_streets["orientation"],
            street_index,
        )
        old = mm.StreetAlignment(
            self.df_buildings.reset_index(),
            self.df_streets.reset_index(),
            "orientation",
            left_network_id="nID",
            right_network_id="index",
        ).series
        assert_series_equal(new, old, check_names=False, check_index=False)

    def test_cell_alignment(self):
        df_buildings = self.df_buildings.reset_index()
        df_tessellation = self.df_tessellation.reset_index()
        df_buildings["orient"] = blgori = mm.orientation(df_buildings)
        df_tessellation["orient"] = tessori = mm.orientation(df_tessellation)

        align_new = mm.cell_alignment(blgori, tessori)

        align_old = mm.CellAlignment(
            df_buildings, df_tessellation, "orient", "orient", "uID", "uID"
        ).series

        assert_series_equal(align_new, align_old, check_names=False, check_dtype=False)