File: test_elements.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (414 lines) | stat: -rw-r--r-- 15,898 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import geopandas as gpd
import libpysal
import numpy as np
import pandas as pd
import pytest
from geopandas.testing import assert_geodataframe_equal
from packaging.version import Version
from pandas.testing import assert_index_equal, assert_series_equal
from shapely import affinity
from shapely.geometry import MultiPoint, Polygon, box

import momepy as mm

GPD_GE_013 = Version(gpd.__version__) >= Version("0.13.0")
LPS_GE_411 = Version(libpysal.__version__) >= Version("4.11.dev")


class TestElements:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
        self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.limit = mm.buffered_limit(self.df_buildings, 50)
        self.enclosures = mm.enclosures(
            self.df_streets,
            gpd.GeoSeries([self.limit.exterior], crs=self.df_streets.crs),
        )

    def test_morphological_tessellation(self):
        tessellation = mm.morphological_tessellation(
            self.df_buildings,
        )
        assert (tessellation.geom_type == "Polygon").all()
        assert tessellation.crs == self.df_buildings.crs
        assert_index_equal(tessellation.index, self.df_buildings.index)
        assert isinstance(tessellation, gpd.GeoDataFrame)

        clipped = mm.morphological_tessellation(
            self.df_buildings,
            clip=self.limit,
        )

        assert (tessellation.geom_type == "Polygon").all()
        assert tessellation.crs == self.df_buildings.crs
        assert_index_equal(tessellation.index, self.df_buildings.index)
        assert clipped.area.sum() < tessellation.area.sum()

        sparser = mm.morphological_tessellation(
            self.df_buildings,
            segment=2,
        )
        if GPD_GE_013:
            assert (
                sparser.get_coordinates().shape[0]
                < tessellation.get_coordinates().shape[0]
            )

    def test_morphological_tessellation_buffer_clip(self):
        tessellation = mm.morphological_tessellation(
            self.df_buildings, clip=self.df_buildings.buffer(50)
        )
        assert (tessellation.geom_type == "Polygon").all()
        assert tessellation.crs == self.df_buildings.crs
        assert_index_equal(tessellation.index, self.df_buildings.index)

    def test_morphological_tessellation_errors(self):
        df = self.df_buildings
        b = df.total_bounds
        x = np.mean([b[0], b[2]])
        y = np.mean([b[1], b[3]])

        df = pd.concat(
            [
                df,
                gpd.GeoDataFrame(
                    {"uID": [145, 146, 147]},
                    geometry=[
                        Polygon([(x, y), (x, y + 1), (x + 1, y)]),
                        MultiPoint([(x, y), (x + 1, y)]).buffer(0.55),
                        affinity.rotate(df.geometry.iloc[0], 12),
                    ],
                    index=[144, 145, 146],
                    crs=df.crs,
                ),
            ]
        )
        tessellation = mm.morphological_tessellation(
            df,
        )
        assert (tessellation.geom_type == "Polygon").all()
        assert 144 not in tessellation.index
        assert len(tessellation) == len(df) - 1

    def test_enclosed_tessellation(self):
        tessellation = mm.enclosed_tessellation(
            self.df_buildings,
            self.enclosures.geometry,
        )
        assert (tessellation.geom_type == "Polygon").all()
        assert tessellation.crs == self.df_buildings.crs
        assert (self.df_buildings.index.isin(tessellation.index)).all()
        assert np.isin(np.array(range(-11, 0, 1)), tessellation.index).all()

        sparser = mm.enclosed_tessellation(
            self.df_buildings,
            self.enclosures.geometry,
            segment=2,
        )
        if GPD_GE_013:
            assert (
                sparser.get_coordinates().shape[0]
                < tessellation.get_coordinates().shape[0]
            )

        no_threshold_check = mm.enclosed_tessellation(
            self.df_buildings, self.enclosures.geometry, threshold=None, n_jobs=1
        )

        assert_geodataframe_equal(tessellation, no_threshold_check)

        buildings = pd.concat(
            [
                self.df_buildings,
                gpd.GeoDataFrame(
                    {"uID": [145, 146]},
                    geometry=[
                        box(1603283, 6464150, 1603316, 6464234),
                        box(1603293, 6464150, 1603316, 6464244),
                    ],
                    crs=self.df_buildings.crs,
                    index=[144, 145],
                ),
            ]
        )

        threshold_elimination = mm.enclosed_tessellation(
            buildings, self.enclosures.geometry, threshold=0.99, n_jobs=1
        )
        assert not threshold_elimination.index.duplicated().any()
        assert_index_equal(threshold_elimination.index, tessellation.index)
        if GPD_GE_013:
            assert_geodataframe_equal(
                tessellation.sort_values("geometry").reset_index(drop=True),
                threshold_elimination.sort_values("geometry").reset_index(drop=True),
            )

        tessellation_df = mm.enclosed_tessellation(
            self.df_buildings,
            self.enclosures,
        )
        assert_geodataframe_equal(tessellation, tessellation_df)

        custom_index = self.enclosures
        custom_index.index = (custom_index.index + 100).astype(str)
        tessellation_custom_index = mm.enclosed_tessellation(
            self.df_buildings,
            custom_index,
        )
        assert (tessellation_custom_index.geom_type == "Polygon").all()
        assert tessellation_custom_index.crs == self.df_buildings.crs
        assert (self.df_buildings.index.isin(tessellation_custom_index.index)).all()
        assert tessellation_custom_index.enclosure_index.isin(custom_index.index).all()

    def test_verify_tessellation(self):
        df = self.df_buildings
        b = df.total_bounds
        x = np.mean([b[0], b[2]])
        y = np.mean([b[1], b[3]])

        df = pd.concat(
            [
                df,
                gpd.GeoDataFrame(
                    {"uID": [145]},
                    geometry=[
                        Polygon([(x, y), (x, y + 1), (x + 1, y)]),
                    ],
                    index=[144],
                    crs=df.crs,
                ),
            ]
        )
        tessellation = mm.morphological_tessellation(
            df, clip=self.df_streets.buffer(50)
        )
        with (
            pytest.warns(
                UserWarning, match="Tessellation does not fully match buildings"
            ),
            pytest.warns(
                UserWarning, match="Tessellation contains MultiPolygon elements"
            ),
        ):
            collapsed, multi = mm.verify_tessellation(tessellation, df)
        assert_index_equal(collapsed, pd.Index([144]))
        assert_index_equal(
            multi, pd.Index([1, 46, 57, 62, 103, 105, 129, 130, 134, 136, 137])
        )

    def test_get_nearest_street(self):
        streets = self.df_streets.copy()
        nearest = mm.get_nearest_street(self.df_buildings, streets)
        assert len(nearest) == len(self.df_buildings)
        expected = np.array(
            [0, 1, 2, 5, 6, 8, 10, 11, 12, 14, 16, 19, 21, 24, 25, 26, 28, 32, 33, 34]
        )
        expected_counts = np.array(
            [9, 1, 12, 5, 7, 15, 1, 3, 4, 1, 3, 9, 9, 6, 5, 5, 15, 6, 10, 18]
        )
        unique, counts = np.unique(nearest, return_counts=True)
        np.testing.assert_array_equal(unique, expected)
        np.testing.assert_array_equal(counts, expected_counts)

        # induce missing
        nearest = mm.get_nearest_street(self.df_buildings, streets, 10)
        expected = np.array([2.0, 34.0, np.nan])
        expected_counts = np.array([3, 4, 137])
        unique, counts = np.unique(nearest, return_counts=True)
        np.testing.assert_array_equal(unique, expected)
        np.testing.assert_array_equal(counts, expected_counts)

        streets.index = streets.index.astype(str)
        nearest = mm.get_nearest_street(self.df_buildings, streets, 10)
        assert pd.isna(nearest).sum() == 137  # noqa: E711

    def test_get_nearest_node(self):
        nodes, edges = mm.nx_to_gdf(mm.gdf_to_nx(self.df_streets))
        edge_index = mm.get_nearest_street(self.df_buildings, edges)

        node_index = mm.get_nearest_node(self.df_buildings, nodes, edges, edge_index)

        assert len(node_index) == len(self.df_buildings)
        assert_index_equal(node_index.index, self.df_buildings.index)
        expected = np.array(
            [
                0.0,
                1.0,
                2.0,
                3.0,
                4.0,
                6.0,
                9.0,
                11.0,
                14.0,
                15.0,
                16.0,
                20.0,
                22.0,
                25.0,
            ]
        )
        expected_counts = np.array([9, 31, 12, 10, 11, 2, 23, 8, 2, 8, 3, 6, 12, 7])
        unique, counts = np.unique(node_index, return_counts=True)
        np.testing.assert_array_equal(unique, expected)
        np.testing.assert_array_equal(counts, expected_counts)

    def test_get_nearest_node_missing(self):
        nodes, edges = mm.nx_to_gdf(mm.gdf_to_nx(self.df_streets))
        edge_index = mm.get_nearest_street(self.df_buildings, edges, max_distance=20)

        node_index = mm.get_nearest_node(self.df_buildings, nodes, edges, edge_index)

        assert len(node_index) == len(self.df_buildings)
        assert_index_equal(node_index.index, self.df_buildings.index)
        expected = np.array(
            [1.0, 2.0, 3.0, 4.0, 9.0, 11.0, 14.0, 15.0, 16.0, 20.0, 22.0, 25.0, np.nan]
        )
        expected_counts = np.array([14, 8, 10, 4, 14, 8, 2, 7, 2, 5, 9, 4, 57])
        unique, counts = np.unique(node_index, return_counts=True)
        np.testing.assert_array_equal(unique, expected)
        np.testing.assert_array_equal(counts, expected_counts)

    def test_buffered_limit(self):
        limit = mm.buffered_limit(self.df_buildings, 50)
        assert limit.geom_type == "Polygon"
        assert pytest.approx(limit.area) == 366525.967849688

    @pytest.mark.skipif(not LPS_GE_411, reason="libpysal>=4.11 required")
    def test_buffered_limit_adaptive(self):
        limit = mm.buffered_limit(self.df_buildings, "adaptive")
        assert limit.geom_type == "Polygon"
        assert pytest.approx(limit.area) == 355819.18954170

        limit = mm.buffered_limit(self.df_buildings, "adaptive", max_buffer=30)
        assert limit.geom_type == "Polygon"
        assert pytest.approx(limit.area) == 304200.301833294

        limit = mm.buffered_limit(
            self.df_buildings, "adaptive", min_buffer=30, max_buffer=300
        )
        assert limit.geom_type == "Polygon"
        assert pytest.approx(limit.area) == 357671.831894244

    @pytest.mark.skipif(LPS_GE_411, reason="libpysal>=4.11 required")
    def test_buffered_limit_adaptive_error(self):
        with pytest.raises(
            ImportError, match="Adaptive buffer requires libpysal 4.11 or higher."
        ):
            mm.buffered_limit(self.df_buildings, "adaptive")

    def test_buffered_limit_error(self):
        with pytest.raises(
            ValueError, match="`buffer` must be either 'adaptive' or a number."
        ):
            mm.buffered_limit(self.df_buildings, "invalid")

    def test_blocks(self):
        blocks, tessellation_id = mm.generate_blocks(
            self.df_tessellation, self.df_streets, self.df_buildings
        )
        assert not tessellation_id.isna().any()
        assert len(blocks) == 8

    def test_blocks_inner(self):
        streets = self.df_streets.copy()
        streets.loc[35, "geometry"] = (
            self.df_buildings.geometry.iloc[141]
            .representative_point()
            .buffer(20)
            .exterior
        )
        blocks, tessellation_id = mm.generate_blocks(
            self.df_tessellation, streets, self.df_buildings
        )
        assert not tessellation_id.isna().any()
        assert len(blocks) == 9
        if GPD_GE_013:
            assert len(blocks.sindex.query(blocks.geometry, "overlaps")[0]) == 0
        else:
            assert len(blocks.sindex.query_bulk(blocks.geometry, "overlaps")[0]) == 0

    def test_multi_index(self):
        buildings = self.df_buildings.set_index(["uID", "uID"])
        with pytest.raises(
            ValueError,
            match="MultiIndex is not supported in `momepy.morphological_tessellation`.",
        ):
            mm.morphological_tessellation(buildings)
        with pytest.raises(
            ValueError,
            match="MultiIndex is not supported in `momepy.enclosed_tessellation`.",
        ):
            mm.enclosed_tessellation(buildings, self.enclosures)
        with pytest.raises(
            ValueError,
            match="MultiIndex is not supported in `momepy.verify_tessellation`.",
        ):
            mm.verify_tessellation(buildings, self.enclosures)

        with pytest.raises(
            ValueError,
            match="MultiIndex is not supported in `momepy.get_nearest_node`.",
        ):
            mm.get_nearest_node(
                buildings, self.enclosures, self.enclosures, self.enclosures
            )

        with pytest.raises(
            ValueError, match="MultiIndex is not supported in `momepy.generate_blocks`"
        ):
            mm.generate_blocks(buildings, self.enclosures, self.enclosures)

    def test_tess_single_building_edge_case(self):
        tessellations = mm.enclosed_tessellation(
            self.df_buildings, self.enclosures.geometry, n_jobs=-1
        )
        orig_grouper = tessellations.groupby("enclosure_index")
        idxs = ~self.df_buildings.index.isin(orig_grouper.get_group(8).index)
        idxs[1] = True
        idxs[21] = False
        idxs[23] = False

        new_blg = self.df_buildings[idxs]
        new_blg.loc[22, "geometry"] = new_blg.loc[22, "geometry"].buffer(20)
        new_tess = mm.enclosed_tessellation(new_blg, self.enclosures.geometry, n_jobs=1)

        # assert that buildings 1 and 22 intersect the same enclosure
        inp, res = self.enclosures.sindex.query(
            new_blg.geometry, predicate="intersects"
        )
        assert np.isclose(new_blg.iloc[inp[res == 8]].index.values, [1, 22]).all()

        # assert that there is a tessellation for building 1
        assert 1 in new_tess.index


class TestElementsEquivalence:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
        self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.limit = mm.buffered_limit(self.df_buildings, 50)
        self.enclosures = mm.enclosures(
            self.df_streets,
            gpd.GeoSeries([self.limit.exterior], crs=self.df_streets.crs),
        )

    def test_blocks(self):
        blocks, tessellation_id = mm.generate_blocks(
            self.df_tessellation, self.df_streets, self.df_buildings
        )
        res = mm.Blocks(
            self.df_tessellation, self.df_streets, self.df_buildings, "bID", "uID"
        )

        assert_geodataframe_equal(
            blocks.geometry.to_frame(), res.blocks.geometry.to_frame()
        )
        assert_series_equal(
            tessellation_id[tessellation_id.index >= 0], res.buildings_id
        )
        assert_series_equal(tessellation_id, res.tessellation_id)