1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
|
#!/usr/bin/env python
# connectivity.py
# definitions of connectivity characters
import collections
import math
from typing import Any
import networkx as nx
import numpy as np
from pandas import Series
from tqdm.auto import tqdm
__all__ = [
"node_degree",
"meshedness",
"mean_node_dist",
"cds_length",
"mean_node_degree",
"proportion",
"cyclomatic",
"edge_node_ratio",
"gamma",
"clustering",
"closeness_centrality",
"betweenness_centrality",
"straightness_centrality",
"subgraph",
"mean_nodes",
"node_density",
]
def node_degree(graph: nx.Graph, name: str = "degree") -> nx.Graph:
"""
Calculates node degree for each node. Wrapper around ``networkx.degree()``.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
name : str (default 'degree')
The calculated attribute name.
Returns
-------
netx : Graph
A networkx.Graph object .
Examples
--------
>>> network_graph = mm.node_degree(network_graph)
"""
netx = graph.copy()
degree = dict(nx.degree(netx))
nx.set_node_attributes(netx, degree, name)
return netx
def _meshedness(graph: nx.Graph) -> float:
"""Calculates meshedness of a graph."""
e = graph.number_of_edges()
v = graph.number_of_nodes()
return (e - v + 1) / (2 * v - 5)
def meshedness(
graph: nx.Graph,
radius: int = 5,
name: str = "meshedness",
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates meshedness for subgraph around each node if radius is set, or for
whole graph, if ``radius=None``. A subgraph is generated around each node within
set radius. If ``distance=None``, radius will define topological distance,
otherwise it uses values in distance attribute.
.. math::
\\alpha=\\frac{e-v+1}{2 v-5}
where :math:`e` is the number of edges in a subgraph and :math:`v`
is the number of nodes in a subgraph.
Adapted from :cite:`feliciotti2018`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int, optional
Include all neighbors of distance <= radius from ``n``.
name : str, optional
The calculated attribute name.
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object if ``radius`` is set.
float
The meshedness for the graph if ``radius=None``.
Examples
--------
>>> network_graph = mm.meshedness(network_graph, radius=800, distance='edge_length')
"""
netx = graph.copy()
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _meshedness(
sub
) # save value calulated for subgraph to node
return netx
return _meshedness(netx)
def mean_node_dist(
graph: nx.Graph, name: str = "meanlen", length: str = "mm_len", verbose: bool = True
) -> nx.Graph:
"""
Calculates mean distance to neighbouring nodes.
Mean of values in ``length`` attribute.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
name : str, optional
The calculated attribute name.
length : str, optional
The name of the attribute of segment length (geographical).
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object.
Examples
--------
>>> network_graph = mm.mean_node_dist(network_graph)
"""
netx = graph.copy()
for n, nbrs in tqdm(netx.adj.items(), total=len(netx), disable=not verbose):
lengths = []
for _nbr, keydict in nbrs.items():
for _key, eattr in keydict.items():
lengths.append(eattr[length])
netx.nodes[n][name] = np.mean(lengths)
return netx
def _cds_length(graph: nx.Graph, mode, length):
"""Calculates cul-de-sac length in a graph."""
lens = []
for u, v, k, cds in graph.edges.data("cdsbool", keys=True):
if cds:
lens.append(graph[u][v][k][length])
if mode == "sum":
return sum(lens)
if mode == "mean":
return np.mean(lens)
raise ValueError(f"Mode '{mode}' is not supported. Use 'sum' or 'mean'.")
def cds_length(
graph: nx.Graph,
radius: int = 5,
mode: str = "sum",
name: str = "cds_len",
degree: str = "degree",
length: str = "mm_len",
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates length of cul-de-sacs for subgraph around each node if radius is set,
or for whole graph, if ``radius=None``. A subgraph is generated around each node
within set radius. If ``distance=None``, radius will define topological distance,
otherwise it uses values in distance attribute.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius : int
Include all neighbors of distance <= radius from ``n``.
mode : str (default 'sum')
If ``'sum'``, calculate total length, if ``'mean'`` calculate mean length.
name : str, optional
The calculated attribute name.
degree : str
The name of attribute of node degree (:py:func:`momepy.node_degree`).
length : str, optional
The name of the attribute of segment length (geographical).
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object if ``radius`` is set.
float
The length of cul-de-sacs for the graph if ``radius=None``.
Examples
--------
>>> network_graph = mm.cds_length(network_graph, radius=9, mode='mean')
"""
# node degree needed beforehand
netx = graph.copy()
for u, v, k in netx.edges(keys=True):
if netx.nodes[u][degree] == 1 or netx.nodes[v][degree] == 1:
netx[u][v][k]["cdsbool"] = True
else:
netx[u][v][k]["cdsbool"] = False
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _cds_length(
sub, mode=mode, length=length
) # save value calculated for subgraph to node
return netx
return _cds_length(netx, mode=mode, length=length)
def _mean_node_degree(graph: nx.Graph, degree):
"""Calculates mean node degree in a graph."""
return np.mean(list(dict(graph.nodes(degree)).values()))
def mean_node_degree(
graph: nx.Graph,
radius: int = 5,
name: str = "mean_nd",
degree: str = "degree",
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates mean node degree for subgraph around each node if radius is set, or for
whole graph, if ``radius=None``. A subgraph is generated around each node within
set radius. If ``distance=None``, radius will define topological distance,
otherwise it uses values in ``distance`` attribute.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int
Include all neighbors of distance <= radius from ``n``.
name : str, optional
The calculated attribute name.
degree : str
The name of attribute of node degree (:py:func:`momepy.node_degree`).
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object if ``radius`` is set.
float
The mean node degree for the graph if ``radius=None``.
Examples
--------
>>> network_graph = mm.mean_node_degree(network_graph, radius=3)
"""
netx = graph.copy()
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _mean_node_degree(sub, degree=degree)
return netx
return _mean_node_degree(netx, degree=degree)
def _proportion(graph: nx.Graph, degree):
"""Calculates the proportion of intersection types in a graph."""
counts = collections.Counter(dict(graph.nodes(degree)).values())
return counts
def proportion(
graph: nx.Graph,
radius: int = 5,
three: str | None = None,
four: str | None = None,
dead: str | None = None,
degree: str = "degree",
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates the proportion of intersection types for subgraph around each node if
radius is set, or for whole graph, if ``radius=None``. A subgraph is generated
around each node within set radius. If ``distance=None``, the radius will define
topological distance, otherwise it uses values in ``distance`` attribute.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int
Include all neighbors of distance <= radius from ``n``.
three : str, optional
The attribute name for 3-way intersections proportion.
four : str, optional
The attribute name for 4-way intersections proportion.
dead : str, optional
The attribute name for deadends proportion.
degree : str
The name of attribute of node degree (:py:func:`momepy.node_degree`).
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object if ``radius`` is set.
result : dict
A dict with proportions for the graph if ``radius=None``.
Examples
--------
>>> network_graph = mm.proportion(
... network_graph, three='threeway', four='fourway', dead='deadends'
... ) # noqa
"""
if not three and not four and not dead:
raise ValueError(
"Nothing to calculate. Define names for at least "
"one proportion to be calculated."
)
netx = graph.copy()
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
counts = _proportion(sub, degree=degree)
if three:
netx.nodes[n][three] = counts[3] / len(sub)
if four:
netx.nodes[n][four] = counts[4] / len(sub)
if dead:
netx.nodes[n][dead] = counts[1] / len(sub)
return netx
# add example to docs explaining keys
counts = _proportion(netx, degree=degree)
result = {}
if three:
result[three] = counts[3] / len(netx)
if four:
result[four] = counts[4] / len(netx)
if dead:
result[dead] = counts[1] / len(netx)
return result
def _cyclomatic(graph: nx.Graph) -> int:
"""Calculates the cyclomatic complexity of a graph."""
e = graph.number_of_edges()
v = graph.number_of_nodes()
return e - v + 1
def cyclomatic(
graph: nx.Graph,
radius: int = 5,
name: str = "cyclomatic",
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates cyclomatic complexity for subgraph around each node if radius is set, or
for whole graph, if ``radius=None``. A subgraph is generated around each node
within set radius. If ``distance=None``, radius will define topological distance,
otherwise it uses values in ``distance`` attribute.
.. math::
\\alpha=e-v+1
where :math:`e` is the number of edges in subgraph and :math:`v` is the number of
nodes in subgraph.
Adapted from :cite:`bourdic2012`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int
Include all neighbors of distance <= radius from ``n``.
name : str, optional
The calculated attribute name.
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object if ``radius`` is set.
float
The cyclomatic complexity for the graph if ``radius=None``.
Examples
--------
>>> network_graph = mm.cyclomatic(network_graph, radius=3)
"""
netx = graph.copy()
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _cyclomatic(
sub
) # save value calulated for subgraph to node
return netx
return _cyclomatic(netx)
def _edge_node_ratio(graph: nx.Graph) -> float:
"""Calculates edge / node ratio of a graph."""
e = graph.number_of_edges()
v = graph.number_of_nodes()
return e / v
def edge_node_ratio(
graph: nx.Graph,
radius: int = 5,
name: str = "edge_node_ratio",
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates edge / node ratio for subgraph around each node if radius is set, or for
whole graph, if ``radius=None``. A subgraph is generated around each node within
set radius. If ``distance=None``, radius will define topological distance,
otherwise it uses values in ``distance`` attribute.
.. math::
\\alpha=e/v
where :math:`e` is the number of edges in subgraph and :math:`v` is the number of
nodes in subgraph.
Adapted from :cite:`dibble2017`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int
Include all neighbors of distance <= radius from ``n``.
name : str, optional
The calculated attribute name.
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object if ``radius`` is set.
float
The edge / node ratio for the graph if ``radius=None``.
Examples
--------
>>> network_graph = mm.edge_node_ratio(network_graph, radius=3)
"""
netx = graph.copy()
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _edge_node_ratio(
sub
) # save value calulated for subgraph to node
return netx
return _edge_node_ratio(netx)
def _gamma(graph: nx.Graph):
"""Calculates gamma index of a graph."""
e = graph.number_of_edges()
v = graph.number_of_nodes()
if v == 2:
return np.nan
return e / (3 * (v - 2)) # save value calulated for subgraph to node
def gamma(
graph: nx.Graph,
radius: int = 5,
name: str = "gamma",
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates connectivity gamma index for subgraph around each node if radius is set,
or for whole graph, if ``radius=None``. A subgraph is generated around each node
within set radius. If ``distance=None``, radius will define topological distance,
otherwise it uses values in ``distance`` attribute.
.. math::
\\alpha=\\frac{e}{3(v-2)}
where :math:`e` is the number of edges in subgraph and :math:`v` is the number of
nodes in subgraph.
Adapted from :cite:`dibble2017`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int
Include all neighbors of distance <= radius from ``n``.
name : str, optional
The calculated attribute name.
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object if ``radius`` is set.
float
The gamma index for the graph if ``radius=None``.
Examples
--------
>>> network_graph = mm.gamma(network_graph, radius=3)
"""
netx = graph.copy()
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _gamma(sub)
return netx
return _gamma(netx)
def clustering(graph: nx.Graph, name: str = "cluster") -> nx.Graph:
"""
Calculates the squares clustering coefficient for nodes.
Wrapper around ``networkx.square_clustering``.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
name : str, optional
The calculated attribute name.
Returns
-------
netx : Graph
A networkx.Graph object.
Examples
--------
>>> network_graph = mm.clustering(network_graph)
"""
netx = graph.copy()
vals = nx.square_clustering(netx)
nx.set_node_attributes(netx, vals, name)
return netx
def _closeness_centrality(graph: nx.Graph, u=None, length=None, len_graph=None):
r"""Compute closeness centrality for nodes. Slight adaptation of networkx
`closeness_centrality` to allow normalisation for local closeness.
Adapted script used in networkx. The closeness centrality [1]_ of a node `u` is
the reciprocal of the average shortest path distance to `u` over all
`n-1` reachable nodes.
.. math::
C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)},
where `d(v, u)` is the shortest-path distance between `v` and `u`,
and `n` is the number of nodes that can reach `u`. Notice that the
closeness distance function computes the incoming distance to `u`
for directed graphs. To use outward distance, act on `graph.reverse()`.
Notice that higher values of closeness indicate higher centrality.
Wasserman and Faust propose an improved formula for graphs with
more than one connected component. The result is "a ratio of the
fraction of actors in the group who are reachable, to the average
distance" from the reachable actors [2]_. You might think this
scale factor is inverted but it is not. As is, nodes from small
components receive a smaller closeness value. Letting `N` denote
the number of nodes in the graph,
.. math::
C_{WF}(u) = \frac{n-1}{N-1} \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)},
Parameters
----------
G : graph
A NetworkX graph.
u : node, optional
Return only the value for node ``u``.
distance : edge attribute key, optional (default=None)
Use the specified edge attribute as the edge
distance in shortest path calculations.
len_graph : int
The length of the complete graph.
Returns
-------
nodes : dict
Dictionary of nodes with closeness centrality as the value.
References
----------
.. [1] Linton C. Freeman: Centrality in networks: I.
Conceptual clarification. Social Networks 1:215-239, 1979.
http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf
.. [2] pg. 201 of Wasserman, S. and Faust, K.,
Social Network Analysis: Methods and Applications, 1994,
Cambridge University Press.
"""
if length is not None:
import functools
# use Dijkstra's algorithm with specified attribute as edge weight
path_length = functools.partial(
nx.single_source_dijkstra_path_length, weight=length
)
else:
path_length = nx.single_source_shortest_path_length
nodes = [u]
closeness_centrality_ = dict.fromkeys(nodes, 0.0)
for n in nodes:
sp = dict(path_length(graph, n))
totsp = sum(sp.values())
if totsp > 0 and len(graph) > 1:
closeness_centrality_[n] = (len(sp) - 1) / totsp
# normalize to number of nodes-1 in connected part
s = (len(sp) - 1) / (len_graph - 1)
closeness_centrality_[n] *= s
return closeness_centrality_[u]
def closeness_centrality(
graph: nx.Graph,
name: str = "closeness",
weight: str = "mm_len",
radius: int | None = None,
distance: Any | None = None,
verbose: bool = True,
**kwargs,
) -> nx.Graph:
"""
Calculates the closeness centrality for nodes.
Wrapper around ``networkx.closeness_centrality``.
Closeness centrality of a node `u` is the reciprocal of the
average shortest path distance to `u` over all `n-1` nodes within reachable nodes.
.. math::
C(u) = \\frac{n - 1}{\\sum_{v=1}^{n-1} d(v, u)},
where :math:`d(v, u)` is the shortest-path distance between :math:`v` and
:math:`u`, and :math:`n` is the number of nodes that can reach :math:`u`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
name : str, optional
The calculated attribute name.
weight : str (default 'mm_len')
The attribute holding the weight of edge (e.g. length, angle).
radius: int
Include all neighbors of distance <= radius from ``n``.
distance : str, optional
Use specified edge data key as distance.
For example, setting ``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n`` during ``ego_graph`` generation.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
**kwargs : dict
Keyword arguments for ``networkx.closeness_centrality``.
Returns
-------
netx : Graph
A networkx.Graph object.
Examples
--------
>>> network_graph = mm.closeness_centrality(network_graph)
"""
netx = graph.copy()
if radius:
lengraph = len(netx)
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _closeness_centrality(
sub, n, length=weight, len_graph=lengraph
)
else:
vals = nx.closeness_centrality(netx, distance=weight, **kwargs)
nx.set_node_attributes(netx, vals, name)
return netx
def betweenness_centrality(
graph: nx.Graph,
name: str = "betweenness",
mode: str = "nodes",
weight: str = "mm_len",
endpoints: bool = True,
radius: int | None = None,
distance: Any | None = None,
normalized: bool = False,
verbose: bool = True,
**kwargs,
) -> nx.Graph:
"""
Calculates the shortest-path betweenness centrality for nodes.
Wrapper around ``networkx.betweenness_centrality`` or
``networkx.edge_betweenness_centrality``.
Betweenness centrality of a node `v` is the sum of the
fraction of all-pairs shortest paths that pass through `v`
.. math::
c_B(v) =\\sum_{s,t \\in V} \\frac{\\sigma(s, t|v)}{\\sigma(s, t)}
where `V` is the set of nodes, :math:`\\sigma(s, t)` is the number of
shortest :math:`(s, t)`-paths, and :math:`\\sigma(s, t|v)` is the number of
those paths passing through some node `v` other than `s, t`.
If `s = t`, :math:`\\sigma(s, t) = 1`, and if `v` in `{s, t}``,
:math:`\\sigma(s, t|v) = 0`.
Betweenness centrality of an edge `e` is the sum of the
fraction of all-pairs shortest paths that pass through `e`
.. math::
c_B(e) =\\sum_{s,t \\in V} \\frac{\\sigma(s, t|e)}{\\sigma(s, t)}
where `V` is the set of nodes, :math:`\\sigma(s, t)` is the number of
shortest :math:`(s, t)`-paths, and :math:`\\sigma(s, t|e)` is the number of
those paths passing through edge `e`.
Adapted from :cite:`porta2006`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
name : str, optional
The calculated attribute name.
mode : str, default 'nodes'
The mode of betweenness calculation. ``'node'`` for node-based
or ``'edges'`` for edge-based.
weight : str (default 'mm_len')
The attribute holding the weight of edge (e.g. length, angle).
radius: int
Include all neighbors of distance <= radius from ``n``.
distance : str, optional
Use specified edge data key as distance.
For example, setting ``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n`` during ``ego_graph`` generation.
normalized : bool, optional
If ``True`` the betweenness values are normalized by `2/((n-1)(n-2))`,
where ``n`` is the number of nodes in a subgraph.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
**kwargs : dict
Keyword argument for ``networkx.betweenness_centrality`` or
``networkx.edge_betweenness_centrality``.
Returns
-------
netx : Graph
A networkx.Graph object.
Examples
--------
>>> network_graph = mm.betweenness_centrality(network_graph)
Notes
-----
In case of angular betweenness, implementation is based on "Tasos Implementation".
"""
netx = graph.copy()
# has to be Graph not MultiGraph as MG is not supported by networkx2.4
graph = nx.Graph()
for u, v, k, data in netx.edges(data=True, keys=True):
if graph.has_edge(u, v):
if graph[u][v][weight] > netx[u][v][k][weight]:
nx.set_edge_attributes(graph, {(u, v): data})
else:
graph.add_edge(u, v, **data)
if radius:
for n in tqdm(graph, total=len(graph), disable=not verbose):
sub = nx.ego_graph(
graph, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = nx.betweenness_centrality(
sub, weight=weight, normalized=normalized, **kwargs
)[n]
elif mode == "nodes":
vals = nx.betweenness_centrality(
graph, weight=weight, endpoints=endpoints, **kwargs
)
nx.set_node_attributes(netx, vals, name)
elif mode == "edges":
vals = nx.edge_betweenness_centrality(graph, weight=weight, **kwargs)
for u, v, k in netx.edges(keys=True):
try:
val = vals[u, v]
except KeyError:
val = vals[v, u]
netx[u][v][k][name] = val
else:
raise ValueError(f"Mode '{mode}' is not supported. Use 'nodes' or 'edges'.")
return netx
def _euclidean(n, m):
"""Helper for straightness."""
return math.sqrt((n[0] - m[0]) ** 2 + (n[1] - m[1]) ** 2)
def _straightness_centrality(graph: nx.Graph, weight, normalized=True):
"""Calculates straightness centrality."""
straightness_centrality_ = dict.fromkeys(graph.nodes(), 0.0)
for n in graph.nodes():
sp = nx.single_source_dijkstra_path_length(graph, n, weight=weight)
if len(sp) > 0 and len(graph) > 1:
straightness = 0
for target in sp:
if n != target:
network_dist = sp[target]
euclidean_dist = _euclidean(n, target)
straightness = straightness + (euclidean_dist / network_dist)
straightness_centrality_[n] = straightness * (1 / (len(graph) - 1))
# normalize to number of nodes-1 in connected part
if normalized and len(sp) > 1:
s = (len(graph) - 1) / (len(sp) - 1)
straightness_centrality_[n] *= s
return straightness_centrality_
def straightness_centrality(
graph: nx.Graph,
weight: str = "mm_len",
normalized: bool = True,
name: str = "straightness",
radius: int | None = None,
distance: Any | None = None,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates the straightness centrality for nodes.
.. math::
C_{S}(i)=\\frac{1}{n-1} \\sum_{j \\in V, j \\neq i} \\frac{d_{i j}^{E u}}
{d_{i j}}
where :math:`\\mathrm{d}^{\\mathrm{E} \\mathrm{u}}_{\\mathrm{ij}}` is the
Euclidean distance between nodes `i` and `j` along a straight line.
Adapted from :cite:`porta2006`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
weight : str (default 'mm_len')
The attribute holding length of edge.
normalized : bool
Normalize to the number of ``nodes-1`` in the connected part
(for local straightness it is recommended to set to ``normalized=False``).
name : str, optional
The calculated attribute name.
radius: int
Include all neighbors of distance <= radius from ``n``.
distance : str, optional
Use specified edge data key as distance.
For example, setting ``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n`` during ``ego_graph`` generation.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object.
Examples
--------
>>> network_graph = mm.straightness_centrality(network_graph)
"""
netx = graph.copy()
if radius:
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
netx.nodes[n][name] = _straightness_centrality(
sub, weight=weight, normalized=normalized
)[n]
else:
vals = _straightness_centrality(netx, weight=weight, normalized=normalized)
nx.set_node_attributes(netx, vals, name)
return netx
def node_density(
graph: nx.Graph,
radius: int,
length: str = "mm_len",
distance: str | None = None,
verbose: bool = True,
) -> nx.Graph:
"""Calculate the density of a node's neighbours (for all nodes)
on the street network defined in ``graph``.
Calculated as the number of neighbouring
nodes / cumulative length of street network within neighbours.
Returns two values - an unweighted and weighted density unweighted
is calculated based on the number of neigbhouring nodes, whereas weighted
density will take into account node degree as ``k-1``.
Adapted from :cite:`dibble2017`.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int
Include all neighbors of distance <= radius from ``n``.
length : str, default `mm_len`
The name of the attribute of segment length (geographical).
distance : str, optional
Use specified edge data key as distance.
For example, setting ``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n`` during ``ego_graph`` generation.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object.
Examples
--------
>>> network_graph = mm.node_density(network_graph, radius: int=5)
"""
netx = graph.copy()
orig_nodes_degree = Series(nx.get_node_attributes(netx, "degree"))
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
unweighted, weighted = _node_density(
sub, length=length, orig_nodes_degree=orig_nodes_degree
)
netx.nodes[n]["node_density"] = unweighted
netx.nodes[n]["node_density_weighted"] = weighted
return netx
def _node_density(sub, length, orig_nodes_degree):
"""Calculates node density for a subgraph."""
length_sum = sub.size(length)
weighted_node_data = orig_nodes_degree[list(sub.nodes)] - 1
unweighted_node_data = Series(1, index=weighted_node_data)
unweighted = (unweighted_node_data.sum() / length_sum) if length_sum else 0
weighted = (weighted_node_data.sum() / length_sum) if length_sum else 0
return unweighted, weighted
def subgraph(
graph: nx.Graph,
radius: int = 5,
distance: Any | None = None,
meshedness: bool = True,
cds_length: bool = True,
mode: str = "sum",
degree: str = "degree",
length: str = "mm_len",
mean_node_degree: bool = True,
proportion: dict = {3: True, 4: True, 0: True},
cyclomatic: bool = True,
edge_node_ratio: bool = True,
gamma: bool = True,
local_closeness: bool = True,
closeness_weight: Any | None = None,
node_density: bool = True,
verbose: bool = True,
) -> nx.Graph:
"""
Calculates all subgraph-based characters. Generating subgraph might be a time
consuming activity. If we want to use the same subgraph for more characters,
``subgraph`` allows this by generating subgraph and then analysing it using
selected options.
Parameters
----------
graph : networkx.Graph
A Graph representing a street network.
Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx`.
radius: int
Include all neighbors of distance <= radius from ``n``.
distance : str, optional
Use specified edge data key as distance. For example, setting
``distance=’weight’`` will use the edge ``weight`` to
measure the distance from the node ``n``.
meshedness : bool, default True
Calculate meshedness (``True or ``False``).
cds_length : bool, default True
Calculate cul-de-sac length (``True or ``False``).
mode : str (defualt 'sum')
If ``'sum'``, calculate total ``cds_length``,
if ``'mean'`` calculate mean ``cds_length``.
degree : str
The name of attribute of node degree (:py:func:`momepy.node_degree`).
length : str, default `mm_len`
The name of the attribute of segment length (geographical).
mean_node_degree : bool, default True
Calculate mean node degree (``True or ``False``).
proportion : dict, default {3: True, 4: True, 0: True}
Calculate proportion ``{3: True/False, 4: True/False, 0: True/False}``.
cyclomatic : bool, default True
Calculate cyclomatic complexity (``True or ``False``).
edge_node_ratio : bool, default True
Calculate edge node ratio (``True or ``False``).
gamma : bool, default True
Calculate gamma index (``True or ``False``).
local_closeness : bool, default True
Calculate local closeness centrality (``True or ``False``).
closeness_weight : str, optional
Use the specified edge attribute as the edge distance in shortest
path calculations in closeness centrality algorithm.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Returns
-------
netx : Graph
A networkx.Graph object.
Examples
--------
>>> network_graph = mm.subgraph(network_graph)
"""
netx = graph.copy()
if node_density:
orig_nodes_degree = Series(nx.get_node_attributes(netx, "degree"))
for n in tqdm(netx, total=len(netx), disable=not verbose):
sub = nx.ego_graph(
netx, n, radius=radius, distance=distance
) # define subgraph of steps=radius
if meshedness:
netx.nodes[n]["meshedness"] = _meshedness(sub)
if cds_length:
for u, v, k in netx.edges(keys=True):
if netx.nodes[u][degree] == 1 or netx.nodes[v][degree] == 1:
netx[u][v][k]["cdsbool"] = True
else:
netx[u][v][k]["cdsbool"] = False
netx.nodes[n]["cds_length"] = _cds_length(sub, mode=mode, length=length)
if mean_node_degree:
netx.nodes[n]["mean_node_degree"] = _mean_node_degree(sub, degree=degree)
if proportion:
counts = _proportion(sub, degree=degree)
if proportion[3]:
netx.nodes[n]["proportion_3"] = counts[3] / len(sub)
if proportion[4]:
netx.nodes[n]["proportion_4"] = counts[4] / len(sub)
if proportion[0]:
netx.nodes[n]["proportion_0"] = counts[1] / len(sub)
if cyclomatic:
netx.nodes[n]["cyclomatic"] = _cyclomatic(sub)
if edge_node_ratio:
netx.nodes[n]["edge_node_ratio"] = _edge_node_ratio(sub)
if gamma:
netx.nodes[n]["gamma"] = _gamma(sub)
if local_closeness:
lengraph = len(netx)
netx.nodes[n]["local_closeness"] = _closeness_centrality(
sub, n, length=closeness_weight, len_graph=lengraph
)
if node_density:
unweighted, weighted = _node_density(
sub, length=length, orig_nodes_degree=orig_nodes_degree
)
netx.nodes[n]["node_density"] = unweighted
netx.nodes[n]["node_density_weighted"] = weighted
return netx
def mean_nodes(graph: nx.Graph, attr: Any):
"""Calculates mean value of nodes attr for each edge."""
for u, v, k in graph.edges(keys=True):
mean = (graph.nodes[u][attr] + graph.nodes[v][attr]) / 2
graph[u][v][k][attr] = mean
|