1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
#!/usr/bin/env python
# intensity.py
# definitions of intensity characters
import collections
import geopandas as gpd
import numpy as np
import pandas as pd
from packaging.version import Version
from tqdm.auto import tqdm # progress bar
from .utils import deprecated, removed
GPD_GE_10 = Version(gpd.__version__) >= Version("1.0dev")
__all__ = [
"AreaRatio",
"Count",
"Courtyards",
"BlocksCount",
"Reached",
"NodeDensity",
"Density",
]
@removed("a direct division of areas or momepy.describe_agg()")
class AreaRatio:
"""
Calculate covered area ratio or floor area ratio of objects. Either ``unique_id``
or both ``left_unique_id`` and ``right_unique_id`` are required.
.. math::
\\textit{covering object area} \\over \\textit{covered object area}
Adapted from :cite:`schirmer2015`.
Parameters
----------
left : GeoDataFrame
A GeoDataFrame containing objects being covered (e.g. land unit).
right : GeoDataFrame
A GeoDataFrame with covering objects (e.g. building).
left_areas : str, list, np.array, pd.Series
The name of the left dataframe column, ``np.array``, or
``pd.Series`` where area values are stored.
right_areas : str, list, np.array, pd.Series
The name of the right dataframe column, ``np.array``, or
``pd.Series`` where area values are stored.
representing either projected or floor area.
unique_id : str (default None)
The name of the unique ID column shared amongst ``left`` and ``right`` gdfs.
If there is none, it can be generated by :py:func:`momepy.unique_id()`.
left_unique_id : str, list, np.array, pd.Series (default None)
The name of the ``left`` dataframe column, ``np.array``, or
``pd.Series`` where the shared unique IDs are stored.
right_unique_id : str, list, np.array, pd.Series (default None)
The name of the ``right`` dataframe column, ``np.array``, or
``pd.Series`` where the shared unique IDs are stored.
Attributes
----------
series : Series
A Series containing resulting values.
left : GeoDataFrame
The original left GeoDataFrame.
right : GeoDataFrame
The original right GeoDataFrame.
left_areas : Series
A Series containing the used left areas.
right_areas : Series
A Series containing the used right areas.
left_unique_id : Series
A Series containing the used left ID.
right_unique_id : Series
A Series containing used right ID.
Examples
--------
>>> tessellation_df['CAR'] = mm.AreaRatio(tessellation_df,
... buildings_df,
... 'area',
... 'area',
... 'uID').series
"""
def __init__(
self,
left,
right,
left_areas,
right_areas,
unique_id=None,
left_unique_id=None,
right_unique_id=None,
):
self.left = left
self.right = right
left = left.copy()
right = right.copy()
if unique_id:
left_unique_id = unique_id
right_unique_id = unique_id
else:
if left_unique_id is None or right_unique_id is None:
raise ValueError(
"Unique ID not correctly set. Use either ``network_id`` or both"
"``left_unique_id`` and ``right_unique_id``."
)
self.left_unique_id = left_unique_id
self.right_unique_id = right_unique_id
if not isinstance(left_areas, str):
left["mm_a"] = left_areas
left_areas = "mm_a"
self.left_areas = left[left_areas]
if not isinstance(right_areas, str):
right["mm_a"] = right_areas
right_areas = "mm_a"
self.right_areas = right[right_areas]
look_for = right[
[right_unique_id, right_areas]
].copy() # keeping only necessary columns
look_for.rename(index=str, columns={right_areas: "lf_area"}, inplace=True)
look_for = look_for.groupby(right_unique_id).sum().reset_index()
objects_merged = left[[left_unique_id, left_areas]].merge(
look_for, left_on=left_unique_id, right_on=right_unique_id, how="left"
)
objects_merged.index = left.index
self.series = objects_merged["lf_area"] / objects_merged[left_areas]
@removed("momepy.describe_agg()")
class Count:
"""
Calculate the number of elements within an aggregated structure. Aggregated
structures can typically be blocks, street segments, or street nodes (their
snapepd objects). The right gdf has to have a unique ID of aggregated structures
assigned before hand (e.g. using :py:func:`momepy.get_network_id`).
If ``weighted=True``, the number of elements will be divided by the area of
length (based on geometry type) of aggregated elements, to return relative value.
.. math::
\\sum_{i \\in aggr} (n_i);\\space \\frac{\\sum_{i \\in aggr} (n_i)}{area_{aggr}}
Adapted from :cite:`hermosilla2012` and :cite:`feliciotti2018`.
Parameters
----------
left : GeoDataFrame
A GeoDataFrame containing aggregation to analyse.
right : GeoDataFrame
A GeoDataFrame containing objects to analyse.
left_id : str
The name of the column where unique ID in the ``left`` gdf is stored.
right_id : str
The name of the column where unique ID of
aggregation in the ``right`` gdf is stored.
weighted : bool (default False)
If ``True``, count will be divided by the area or length.
Attributes
----------
series : Series
A Series containing resulting values.
left : GeoDataFrame
The original ``left`` GeoDataFrame.
right : GeoDataFrame
The original ``right`` GeoDataFrame.
left_id : Series
A Series containing used ``left`` ID.
right_id : Series
A Series containing used ``right`` ID.
weighted : bool
``True`` if the weighted value was used.
Examples
--------
>>> blocks_df['buildings_count'] = mm.Count(blocks_df,
... buildings_df,
... 'bID',
... 'bID',
... weighted=True).series
"""
def __init__(self, left, right, left_id, right_id, weighted=False):
self.left = left
self.right = right
self.left_id = left[left_id]
self.right_id = right[right_id]
self.weighted = weighted
count = collections.Counter(right[right_id])
df = pd.DataFrame.from_dict(count, orient="index", columns=["mm_count"])
joined = left[[left_id, left.geometry.name]].join(df["mm_count"], on=left_id)
joined.loc[joined["mm_count"].isna(), "mm_count"] = 0
if weighted:
if left.geometry[0].geom_type in ["Polygon", "MultiPolygon"]:
joined["mm_count"] = joined["mm_count"] / left.geometry.area
elif left.geometry[0].geom_type in ["LineString", "MultiLineString"]:
joined["mm_count"] = joined["mm_count"] / left.geometry.length
else:
raise TypeError("Geometry type does not support weighting.")
self.series = joined["mm_count"]
@deprecated("courtyards")
class Courtyards:
"""
Calculate the number of courtyards within the joined structure.
Adapted from :cite:`schirmer2015`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
spatial_weights : libpysal.weights, optional
A spatial weights matrix. If None, Queen contiguity matrix
will be calculated based on objects. It is to denote adjacent
buildings and is based on integer index.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
sw : libpysal.weights
The spatial weights matrix.
Examples
--------
>>> buildings_df['courtyards'] = mm.Courtyards(buildings_df).series
Calculating spatial weights...
"""
def __init__(self, gdf, spatial_weights=None, verbose=True):
self.gdf = gdf
results_list = []
gdf = gdf.copy()
# if weights matrix is not passed, generate it from objects
if spatial_weights is None:
print("Calculating spatial weights...") if verbose else None
from libpysal.weights import Queen
spatial_weights = Queen.from_dataframe(
gdf, silence_warnings=True, use_index=False
)
self.sw = spatial_weights
# dict to store nr of courtyards for each uID
courtyards = {}
components = pd.Series(spatial_weights.component_labels, index=gdf.index)
for i, index in tqdm(
enumerate(gdf.index), total=gdf.shape[0], disable=not verbose
):
# if the id is already present in courtyards, continue (avoid repetition)
if index in courtyards:
continue
else:
comp = spatial_weights.component_labels[i]
to_join = components[components == comp].index
joined = gdf.loc[to_join]
# buffer to avoid multipolygons where buildings touch by corners only
dissolved = (
joined.buffer(0.01).union_all()
if GPD_GE_10
else joined.buffer(0.01).unary_union
)
interiors = len(list(dissolved.interiors))
for b in to_join:
courtyards[b] = interiors # fill dict with values
results_list = [courtyards[index] for index in gdf.index]
self.series = pd.Series(results_list, index=gdf.index)
@removed("`.describe()` method of libpysal.graph.Graph")
class BlocksCount:
"""
Calculates the weighted number of blocks. The number of blocks within neighbours
defined in ``spatial_weights`` divided by the area covered by the neighbours.
.. math::
Adapted from :cite:`dibble2017`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing morphological tessellation.
block_id : str, list, np.array, pd.Series
The name of the objects dataframe column, ``np.array``,
or ``pd.Series`` where block IDs are stored.
spatial_weights : libpysal.weights
A spatial weights matrix.
unique_id : str
The name of the column with a unique ID used as the ``spatial_weights`` index.
weigted : bool, default True
Return value weighted by the analysed area (``True``) or pure count (``False``).
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
block_id : Series
A Series containing used block ID.
sw : libpysal.weights
The spatial weights matrix
id : Series
A Series containing used unique ID.
weighted : bool
``True`` if the weighted value was used.
Examples
--------
>>> sw4 = mm.sw_high(k=4, gdf='tessellation_df', ids='uID')
>>> tessellation_df['blocks_within_4'] = mm.BlocksCount(tessellation_df,
... 'bID',
... sw4,
... 'uID').series
"""
def __init__(
self, gdf, block_id, spatial_weights, unique_id, weighted=True, verbose=True
):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
self.weighted = weighted
# define empty list for results
results_list = []
data = gdf.copy()
if not isinstance(block_id, str):
data["mm_bid"] = block_id
block_id = "mm_bid"
self.block_id = data[block_id]
data = data.set_index(unique_id)
if weighted is True:
areas = data.geometry.area
for index in tqdm(data.index, total=data.shape[0], disable=not verbose):
if index in spatial_weights.neighbors:
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
vicinity = data.loc[neighbours]
if weighted is True:
results_list.append(
vicinity[block_id].unique().shape[0]
/ sum(areas.loc[neighbours])
)
elif weighted is False:
results_list.append(vicinity[block_id].unique().shape[0])
else:
raise ValueError("Attribute 'weighted' needs to be True or False.")
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
@deprecated("describe_reached_agg")
class Reached:
"""
Calculates the number of objects reached within neighbours on a street network.
The number of elements within neighbourhood defined in ``spatial_weights``. If
``spatial_weights`` are ``None``, it will assume topological distance ``0``
(element itself). If ``mode='area'``, returns sum of areas of reached elements.
Requires a ``unique_id`` of network assigned beforehand
(e.g. using :py:func:`momepy.get_network_id`).
Parameters
----------
left : GeoDataFrame
A GeoDataFrame containing streets (either segments or nodes).
right : GeoDataFrame
A GeoDataFrame containing elements to be counted.
left_id : str, list, np.array, pd.Series (default None)
The name of the ``left`` dataframe column, ``np.array``, or ``pd.Series``
where the IDs of streets (segments or nodes) are stored.
right_id : str, list, np.array, pd.Series (default None)
The name of the ``right`` dataframe column, ``np.array``, or ``pd.Series``
where the IDs of streets (segments or nodes) are stored.
spatial_weights : libpysal.weights (default None)
A spatial weights matrix.
mode : str (default 'count')
Tode of calculation. If ``'count'`` function will return the count of reached
elements. If ``'sum'``, it will return sum of ``'values'``. If ``'mean'`` it
will return mean value of ``'values'``. If ``'std'`` it will return standard
deviation of ``'values'``. If ``'values'`` not set it will use of areas of
reached elements.
values : str (default None)
The name of the objects dataframe column with values used for calculations.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
left : GeoDataFrame
The original left GeoDataFrame.
right : GeoDataFrame
The original right GeoDataFrame.
left_id : Series
A Series containing used left ID.
right_id : Series
A Series containing used right ID.
mode : str
The mode of calculation.
sw : libpysal.weights
The spatial weights matrix (if set).
Examples
--------
>>> streets_df['reached'] = mm.Reached(streets_df, buildings_df, 'uID').series
"""
# TODO: allow all modes
def __init__(
self,
left,
right,
left_id,
right_id,
spatial_weights=None,
mode="count",
values=None,
verbose=True,
):
self.left = left
self.right = right
self.sw = spatial_weights
self.mode = mode
# define empty list for results
results_list = []
if not isinstance(right_id, str):
right = right.copy()
right["mm_id"] = right_id
right_id = "mm_id"
self.right_id = right[right_id]
if not isinstance(left_id, str):
left = left.copy()
left["mm_lid"] = left_id
left_id = "mm_lid"
self.left_id = left[left_id]
if mode == "count":
count = collections.Counter(right[right_id])
# iterating over rows one by one
for index, lid in tqdm(
left[left_id].items(), total=left.shape[0], disable=not verbose
):
if spatial_weights is None:
ids = [lid]
else:
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
ids = left.iloc[neighbours][left_id]
if mode == "count":
counts = []
for nid in ids:
counts.append(count[nid])
results_list.append(sum(counts))
else:
if mode == "sum":
func = sum
elif mode == "mean":
func = np.nanmean
elif mode == "std":
func = np.nanstd
mask = right[right_id].isin(ids)
if mask.any():
if values:
results_list.append(func(right.loc[mask][values]))
else:
results_list.append(func(right.loc[mask].geometry.area))
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=left.index)
@deprecated("node_density")
class NodeDensity:
"""
Calculate the density of nodes neighbours on street network defined in
``spatial_weights``. Calculated as the number of neighbouring
nodes / cummulative length of street network within neighbours.
``node_start`` and ``node_end`` is standard output of
:py:func:`momepy.nx_to_gdf` and is compulsory.
Adapted from :cite:`dibble2017`.
Parameters
----------
left : GeoDataFrame
A GeoDataFrame containing nodes of street network.
right : GeoDataFrame
A GeoDataFrame containing edges of street network.
spatial_weights : libpysal.weights
A spatial weights matrix capturing relationship between nodes.
weighted : bool (default False)
If ``True``, density will take into account node degree as ``k-1``.
node_degree : str (optional)
The name of the column of ``left`` containing node degree.
Used if ``weighted=True``.
node_start : str (default 'node_start')
The name of the column of ``right`` containing the ID of the starting nodes.
node_end : str (default 'node_end')
The name of the column of ``right`` containing the ID of the ending node.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
left : GeoDataFrame
The original left GeoDataFrame.
right : GeoDataFrame
The original right GeoDataFrame.
node_start : Series
A Series containing used ids of starting node.
node_end : Series
A Series containing used ids of ending node.
sw : libpysal.weights
The spatial weights matrix.
weighted : bool
The used weighted value.
node_degree : Series
A Series containing used node degree values.
Examples
--------
>>> nodes['density'] = mm.NodeDensity(nodes, edges, sw).series
"""
def __init__(
self,
left,
right,
spatial_weights,
weighted=False,
node_degree=None,
node_start="node_start",
node_end="node_end",
verbose=True,
):
self.left = left
self.right = right
self.sw = spatial_weights
self.weighted = weighted
if weighted:
self.node_degree = left[node_degree]
self.node_start = right[node_start]
self.node_end = right[node_end]
# define empty list for results
results_list = []
lengths = right.geometry.length
# iterating over rows one by one
for index in tqdm(left.index, total=left.shape[0], disable=not verbose):
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
if weighted:
neighbour_nodes = left.iloc[neighbours]
number_nodes = sum(neighbour_nodes[node_degree] - 1)
else:
number_nodes = len(neighbours)
length = lengths.loc[
right["node_start"].isin(neighbours)
& right["node_end"].isin(neighbours)
].sum()
if length > 0:
results_list.append(number_nodes / length)
else:
results_list.append(0)
self.series = pd.Series(results_list, index=left.index)
@removed("`.describe()` method of libpysal.graph.Graph")
class Density:
"""
Calculate the gross density.
.. math::
\\frac{\\sum \\text {values}}{\\sum \\text {areas}}
Adapted from :cite:`dibble2017`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
values : str, list, np.array, pd.Series
The name of the dataframe column, ``np.array``, or ``pd.Series``
where character values are stored.
spatial_weights : libpysal.weight
A spatial weights matrix.
unique_id : str
The name of the column with unique ID used as ``spatial_weights`` index
areas : str, list, np.array, pd.Series (optional)
The name of the dataframe column, ``np.array``, or ``pd.Series``
where area values are stored. If ``None``, gdf.geometry.area will be used.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
values : Series
A Series containing used values.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
areas : Series
A Series containing used area values.
Examples
--------
>>> tessellation_df['floor_area_dens'] = mm.Density(tessellation_df,
... 'floor_area',
... sw,
... 'uID').series
"""
def __init__(
self, gdf, values, spatial_weights, unique_id, areas=None, verbose=True
):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
# define empty list for results
results_list = []
data = gdf.copy()
if values is not None and not isinstance(values, str):
data["mm_v"] = values
values = "mm_v"
self.values = data[values]
if areas is not None:
if not isinstance(areas, str):
data["mm_a"] = areas
areas = "mm_a"
else:
data["mm_a"] = data.geometry.area
areas = "mm_a"
self.areas = data[areas]
data = data.set_index(unique_id)
# iterating over rows one by one
for index in tqdm(data.index, total=data.shape[0], disable=not verbose):
if index in spatial_weights.neighbors:
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
subset = data.loc[neighbours]
values_list = subset[values]
areas_list = subset[areas]
results_list.append(np.sum(values_list) / np.sum(areas_list))
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
|