File: preprocessing.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (1705 lines) | stat: -rw-r--r-- 63,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
#!/usr/bin/env python

import math
import operator
import warnings
from copy import deepcopy

import geopandas as gpd
import libpysal
import networkx as nx
import numpy as np
import pandas as pd
import shapely
from packaging.version import Version
from scipy.signal import find_peaks
from scipy.stats import gaussian_kde
from shapely.geometry import LineString, Point
from shapely.ops import linemerge, polygonize, split
from tqdm.auto import tqdm

from .coins import COINS
from .graph import node_degree
from .shape import CircularCompactness
from .utils import gdf_to_nx, nx_to_gdf

__all__ = [
    "preprocess",
    "remove_false_nodes",
    "CheckTessellationInput",
    "close_gaps",
    "extend_lines",
    "roundabout_simplification",
    "consolidate_intersections",
    "FaceArtifacts",
]

GPD_GE_013 = Version(gpd.__version__) >= Version("0.13.0")


def preprocess(
    buildings, size=30, compactness=0.2, islands=True, loops=2, verbose=True
):
    """
    Preprocesses building geometry to eliminate additional structures being single
    features.

    Certain data providers (e.g. Ordnance Survey in GB) do not provide building geometry
    as one feature, but divided into different features depending their level (if they
    are on ground floor or not - passages, overhangs). Ideally, these features should
    share one building ID on which they could be dissolved. If this is not the case,
    series of steps needs to be done to minimize errors in morphological analysis.

    This script attempts to preprocess such geometry based on several condidions:
    If feature area is smaller than set size it will be a) deleted if it does not
    touch any other feature; b) will be joined to feature with which it shares the
    longest boundary. If feature is fully within other feature, these will be joined.
    If feature's circular compactness (:py:class:`momepy.CircularCompactness`)
    is < 0.2, it will be joined to feature with which it shares the longest boundary.
    Function does multiple loops through.


    Parameters
    ----------
    buildings : geopandas.GeoDataFrame
        geopandas.GeoDataFrame containing building layer
    size : float (default 30)
        maximum area of feature to be considered as additional structure. Set to
        None if not wanted.
    compactness : float (default .2)
        if set, function will resolve additional structures identified based on
        their circular compactness.
    islands : bool (default True)
        if True, function will resolve additional structures which are fully within
        other structures (share 100% of exterior boundary).
    loops : int (default 2)
        number of loops
    verbose : bool (default True)
        if True, shows progress bars in loops and indication of steps

    Returns
    -------
    GeoDataFrame
        GeoDataFrame containing preprocessed geometry
    """
    blg = buildings.copy()
    blg = blg.explode(ignore_index=True)
    for loop in range(0, loops):
        print("Loop", loop + 1, f"out of {loops}.") if verbose else None
        blg.reset_index(inplace=True, drop=True)
        blg["mm_uid"] = range(len(blg))
        sw = libpysal.weights.contiguity.Rook.from_dataframe(
            blg, silence_warnings=True, use_index=False
        )
        blg["neighbors"] = sw.neighbors.values()
        blg["n_count"] = blg.apply(lambda row: len(row.neighbors), axis=1)
        blg["circu"] = CircularCompactness(blg).series

        # idetify those smaller than x with only one neighbor and attaches it to it.
        join = {}
        delete = []

        for row in tqdm(
            blg.itertuples(),
            total=blg.shape[0],
            desc="Identifying changes",
            disable=not verbose,
        ):
            if size and row.geometry.area < size:
                if row.n_count == 1:
                    uid = blg.iloc[row.neighbors[0]].mm_uid
                    join.setdefault(uid, []).append(row.mm_uid)
                elif row.n_count > 1:
                    shares = {}
                    for n in row.neighbors:
                        shares[n] = row.geometry.intersection(
                            blg.at[n, blg.geometry.name]
                        ).length
                    maximal = max(shares.items(), key=operator.itemgetter(1))[0]
                    uid = blg.loc[maximal].mm_uid
                    join.setdefault(uid, []).append(row.mm_uid)
                else:
                    delete.append(row.Index)
            if compactness and row.circu < compactness:
                if row.n_count == 1:
                    uid = blg.iloc[row.neighbors[0]].mm_uid
                    join.setdefault(uid, []).append(row.mm_uid)
                elif row.n_count > 1:
                    shares = {}
                    for n in row.neighbors:
                        shares[n] = row.geometry.intersection(
                            blg.at[n, blg.geometry.name]
                        ).length
                    maximal = max(shares.items(), key=operator.itemgetter(1))[0]
                    uid = blg.loc[maximal].mm_uid
                    join.setdefault(uid, []).append(row.mm_uid)

            if islands and row.n_count == 1:
                shared = row.geometry.intersection(
                    blg.at[row.neighbors[0], blg.geometry.name]
                ).length
                if shared == row.geometry.exterior.length:
                    uid = blg.iloc[row.neighbors[0]].mm_uid
                    join.setdefault(uid, []).append(row.mm_uid)

        for key in tqdm(
            join, total=len(join), desc="Changing geometry", disable=not verbose
        ):
            selection = blg[blg["mm_uid"] == key]
            if not selection.empty:
                geoms = [selection.iloc[0].geometry]

                for j in join[key]:
                    subset = blg[blg["mm_uid"] == j]
                    if not subset.empty:
                        geoms.append(blg[blg["mm_uid"] == j].iloc[0].geometry)
                        blg.drop(blg[blg["mm_uid"] == j].index[0], inplace=True)
                new_geom = shapely.union_all(geoms)
                blg.loc[blg.loc[blg["mm_uid"] == key].index[0], blg.geometry.name] = (
                    new_geom
                )

        blg.drop(delete, inplace=True)
    return blg[buildings.columns]


def remove_false_nodes(gdf):
    """
    Clean topology of existing LineString geometry by removal of nodes of degree 2.

    Returns the original gdf if there's no node of degree 2.

    Parameters
    ----------
    gdf : GeoDataFrame, GeoSeries, array of shapely geometries
        (Multi)LineString data of street network

    Returns
    -------
    gdf : GeoDataFrame, GeoSeries

    See also
    --------
    momepy.extend_lines
    momepy.close_gaps
    """
    if isinstance(gdf, gpd.GeoDataFrame | gpd.GeoSeries):
        # explode to avoid MultiLineStrings
        # reset index due to the bug in GeoPandas explode
        df = gdf.reset_index(drop=True).explode(ignore_index=True)

        # get underlying shapely geometry
        geom = df.geometry.array
    else:
        geom = gdf
        df = gpd.GeoSeries(gdf)

    # extract array of coordinates and number per geometry
    start_points = shapely.get_point(geom, 0)
    end_points = shapely.get_point(geom, -1)

    points = shapely.points(
        np.unique(
            shapely.get_coordinates(np.concatenate([start_points, end_points])), axis=0
        )
    )

    # query LineString geometry to identify points intersecting 2 geometries
    tree = shapely.STRtree(geom)
    inp, res = tree.query(points, predicate="intersects")
    unique, counts = np.unique(inp, return_counts=True)
    mask = np.isin(inp, unique[counts == 2])
    merge_res = res[mask]
    merge_inp = inp[mask]

    if len(merge_res):
        g = nx.Graph(list(zip(merge_inp * -1, merge_res, strict=True)))
        new_geoms = []
        for c in nx.connected_components(g):
            valid = [ix for ix in c if ix > -1]
            new_geoms.append(shapely.line_merge(shapely.union_all(geom[valid])))

        df = df.drop(merge_res)
        final = gpd.GeoSeries(new_geoms, crs=df.crs).explode(ignore_index=True)
        if isinstance(gdf, gpd.GeoDataFrame):
            combined = pd.concat(
                [
                    df,
                    gpd.GeoDataFrame(
                        {df.geometry.name: final}, geometry=df.geometry.name, crs=df.crs
                    ),
                ],
                ignore_index=True,
            )
        else:
            combined = pd.concat([df, final], ignore_index=True)

        # re-order closed loops
        fixed_loops = []
        fixed_index = []
        nodes = nx_to_gdf(
            node_degree(
                gdf_to_nx(
                    combined
                    if isinstance(combined, gpd.GeoDataFrame)
                    else combined.to_frame("geometry")
                )
            ),
            lines=False,
        )
        loops = combined[combined.is_ring]
        node_ix, loop_ix = loops.sindex.query(nodes.geometry, predicate="intersects")
        for ix in np.unique(loop_ix):
            loop_geom = loops.geometry.iloc[ix]
            target_nodes = nodes.geometry.iloc[node_ix[loop_ix == ix]]
            if len(target_nodes) == 2:
                node_coords = shapely.get_coordinates(target_nodes)
                coords = np.array(loop_geom.coords)
                new_start = (
                    node_coords[0]
                    if (node_coords[0] != coords[0]).all()
                    else node_coords[1]
                )
                new_start_idx = np.where(coords == new_start)[0][0]
                rolled_coords = np.roll(coords[:-1], -new_start_idx, axis=0)
                new_sequence = np.append(rolled_coords, rolled_coords[[0]], axis=0)
                fixed_loops.append(shapely.LineString(new_sequence))
                fixed_index.append(ix)
        fixed_loops = gpd.GeoSeries(fixed_loops, crs=df.crs).explode(ignore_index=True)

        if isinstance(gdf, gpd.GeoDataFrame):
            return pd.concat(
                [
                    combined.drop(loops.iloc[fixed_index].index),
                    gpd.GeoDataFrame(
                        {df.geometry.name: fixed_loops},
                        geometry=df.geometry.name,
                        crs=df.crs,
                    ),
                ],
                ignore_index=True,
            )
        else:
            return pd.concat(
                [combined.drop(loops.iloc[fixed_index].index), fixed_loops],
                ignore_index=True,
            )

    # if there's nothing to fix, return the original dataframe
    return gdf


class CheckTessellationInput:
    """
    Check input data for :class:`Tessellation` for potential errors.

    :class:`Tessellation` requires data of relatively high level of precision and there
    are three particular patterns causing issues.\n
    1. Features will collapse into empty polygon - these do not have tessellation
    cell in the end.\n
    2. Features will split into MultiPolygon - at some cases, features with narrow links
    between parts split into two during 'shrinking'. In most cases that is not an issue
    and resulting tessellation is correct anyway, but sometimes this result in a cell
    being MultiPolygon, which is not correct.\n
    3. Overlapping features - features which overlap even after 'shrinking' cause
    invalid tessellation geometry.\n

    :class:`CheckTessellationInput` will check for all of these. Overlapping features
    have to be fixed prior Tessellation. Features which will split will cause issues
    only sometimes, so
    should be checked and fixed if necessary. Features which will collapse could
    be ignored, but they will have to excluded from next steps of
    tessellation-based analysis.

    Parameters
    ----------
    gdf : GeoDataFrame or GeoSeries
        GeoDataFrame containing objects to be used as ``gdf`` in :class:`Tessellation`
    shrink : float (default 0.4)
        distance for negative buffer
    collapse : bool (default True)
        check for features which would collapse to empty polygon
    split : bool (default True)
        check for features which would split into Multi-type
    overlap : bool (default True)
        check for overlapping features (after negative buffer)

    Attributes
    ----------
    collapse : GeoDataFrame or GeoSeries
        features which would collapse to empty polygon
    split : GeoDataFrame or GeoSeries
        features which would split into Multi-type
    overlap : GeoDataFrame or GeoSeries
        overlapping features (after negative buffer)


    Examples
    --------
    >>> check = CheckTessellationData(df)
    Collapsed features  : 3157
    Split features      : 519
    Overlapping features: 22
    """

    warnings.filterwarnings("ignore", "GeoSeries.isna", UserWarning)

    def __init__(self, gdf, shrink=0.4, collapse=True, split=True, overlap=True):
        data = gdf[~gdf.is_empty]

        if split:
            types = data.geom_type

        shrink = data.buffer(-shrink) if shrink != 0 else data

        if collapse:
            emptycheck = shrink.is_empty
            self.collapse = gdf[emptycheck]
            collapsed = len(self.collapse)
        else:
            collapsed = "NA"

        if split:
            type_check = shrink.geom_type != types
            self.split = gdf[type_check]
            split_count = len(self.split)
        else:
            split_count = "NA"

        if overlap:
            shrink = shrink.reset_index(drop=True)
            shrink = shrink[~(shrink.is_empty | shrink.geometry.isna())]
            sindex = shrink.sindex
            hits = shrink.bounds.apply(
                lambda row: list(sindex.intersection(row)), axis=1
            )
            od_matrix = pd.DataFrame(
                {
                    "origin": np.repeat(hits.index, hits.apply(len)),
                    "dest": np.concatenate(hits.values),
                }
            )
            od_matrix = od_matrix[od_matrix.origin != od_matrix.dest]
            duplicated = pd.DataFrame(np.sort(od_matrix, axis=1)).duplicated()
            od_matrix = od_matrix.reset_index(drop=True)[~duplicated]
            od_matrix = od_matrix.join(
                shrink.geometry.rename("o_geom"), on="origin"
            ).join(shrink.geometry.rename("d_geom"), on="dest")
            intersection = od_matrix.o_geom.values.intersection(od_matrix.d_geom.values)
            type_filter = gpd.GeoSeries(intersection).geom_type == "Polygon"
            empty_filter = intersection.is_empty
            overlapping = od_matrix.reset_index(drop=True)[empty_filter ^ type_filter]
            over_rows = sorted(
                pd.concat([overlapping.origin, overlapping.dest]).unique()
            )

            self.overlap = gdf.iloc[over_rows]
            overlapping_c = len(self.overlap)
        else:
            overlapping_c = "NA"

        print(
            f"Collapsed features  : {collapsed}\n"
            f"Split features      : {split_count}\n"
            f"Overlapping features: {overlapping_c}"
        )


def close_gaps(gdf, tolerance):
    """Close gaps in LineString geometry where it should be contiguous.

    Snaps both lines to a centroid of a gap in between.

    Parameters
    ----------
    gdf : GeoDataFrame, GeoSeries
        GeoDataFrame  or GeoSeries containing LineString representation of a network.
    tolerance : float
        nodes within a tolerance will be snapped together

    Returns
    -------
    GeoSeries

    See also
    --------
    momepy.extend_lines
    momepy.remove_false_nodes

    """
    geom = gdf.geometry.array
    coords = shapely.get_coordinates(geom)
    indices = shapely.get_num_coordinates(geom)

    # generate a list of start and end coordinates and create point geometries
    edges = [0]
    i = 0
    for ind in indices:
        ix = i + ind
        edges.append(ix - 1)
        edges.append(ix)
        i = ix
    edges = edges[:-1]
    points = shapely.points(np.unique(coords[edges], axis=0))

    buffered = shapely.buffer(points, tolerance / 2)

    dissolved = shapely.union_all(buffered)

    exploded = [
        shapely.get_geometry(dissolved, i)
        for i in range(shapely.get_num_geometries(dissolved))
    ]

    centroids = shapely.centroid(exploded)

    snapped = shapely.snap(geom, shapely.union_all(centroids), tolerance)

    return gpd.GeoSeries(snapped, crs=gdf.crs)


def extend_lines(gdf, tolerance, target=None, barrier=None, extension=0):
    """Extends lines from gdf to itself or target within a set tolerance

    Extends unjoined ends of LineString segments to join with other segments or
    target. If ``target`` is passed, extend lines to target. Otherwise extend
    lines to itself.

    If ``barrier`` is passed, each extended line is checked for intersection
    with ``barrier``. If they intersect, extended line is not returned. This
    can be useful if you don't want to extend street network segments through
    buildings.

    Parameters
    ----------
    gdf : GeoDataFrame
        GeoDataFrame containing LineString geometry
    tolerance : float
        tolerance in snapping (by how much could be each segment
        extended).
    target : GeoDataFrame, GeoSeries
        target geometry to which ``gdf`` gets extended. Has to be
        (Multi)LineString geometry.
    barrier : GeoDataFrame, GeoSeries
        extended line is not used if it intersects barrier
    extension : float
        by how much to extend line beyond the snapped geometry. Useful
        when creating enclosures to avoid floating point imprecision.

    Returns
    -------
    GeoDataFrame
        GeoDataFrame of with extended geometry

    See also
    --------
    momepy.close_gaps
    momepy.remove_false_nodes

    """
    # explode to avoid MultiLineStrings
    # reset index due to the bug in GeoPandas explode
    df = gdf.reset_index(drop=True).explode(ignore_index=True)

    if target is None:
        target = df
        itself = True
    else:
        itself = False

    # get underlying shapely geometry
    geom = df.geometry.array

    # extract array of coordinates and number per geometry
    coords = shapely.get_coordinates(geom)
    indices = shapely.get_num_coordinates(geom)

    # generate a list of start and end coordinates and create point geometries
    edges = [0]
    i = 0
    for ind in indices:
        ix = i + ind
        edges.append(ix - 1)
        edges.append(ix)
        i = ix
    edges = edges[:-1]
    points = shapely.points(np.unique(coords[edges], axis=0))

    # query LineString geometry to identify points intersecting 2 geometries
    tree = shapely.STRtree(geom)
    inp, res = tree.query(points, predicate="intersects")
    unique, counts = np.unique(inp, return_counts=True)
    ends = np.unique(res[np.isin(inp, unique[counts == 1])])

    new_geoms = []
    # iterate over cul-de-sac-like segments and attempt to snap them to street network
    for line in ends:
        l_coords = shapely.get_coordinates(geom[line])

        start = shapely.points(l_coords[0])
        end = shapely.points(l_coords[-1])

        first = list(tree.query(start, predicate="intersects"))
        second = list(tree.query(end, predicate="intersects"))
        first.remove(line)
        second.remove(line)

        t = target if not itself else target.drop(line)

        if first and not second:
            snapped = _extend_line(l_coords, t, tolerance)
            if (
                barrier is not None
                and barrier.sindex.query(
                    shapely.linestrings(snapped), predicate="intersects"
                ).size
                > 0
            ):
                new_geoms.append(geom[line])
            else:
                if extension == 0:
                    new_geoms.append(shapely.linestrings(snapped))
                else:
                    new_geoms.append(
                        shapely.linestrings(
                            _extend_line(snapped, t, extension, snap=False)
                        )
                    )
        elif not first and second:
            snapped = _extend_line(np.flip(l_coords, axis=0), t, tolerance)
            if (
                barrier is not None
                and barrier.sindex.query(
                    shapely.linestrings(snapped), predicate="intersects"
                ).size
                > 0
            ):
                new_geoms.append(geom[line])
            else:
                if extension == 0:
                    new_geoms.append(shapely.linestrings(snapped))
                else:
                    new_geoms.append(
                        shapely.linestrings(
                            _extend_line(snapped, t, extension, snap=False)
                        )
                    )
        elif not first and not second:
            one_side = _extend_line(l_coords, t, tolerance)
            one_side_e = _extend_line(one_side, t, extension, snap=False)
            snapped = _extend_line(np.flip(one_side_e, axis=0), t, tolerance)
            if (
                barrier is not None
                and barrier.sindex.query(
                    shapely.linestrings(snapped), predicate="intersects"
                ).size
                > 0
            ):
                new_geoms.append(geom[line])
            else:
                if extension == 0:
                    new_geoms.append(shapely.linestrings(snapped))
                else:
                    new_geoms.append(
                        shapely.linestrings(
                            _extend_line(snapped, t, extension, snap=False)
                        )
                    )

    df.iloc[ends, df.columns.get_loc(df.geometry.name)] = new_geoms
    return df


def _extend_line(coords, target, tolerance, snap=True):
    """
    Extends a line geometry to snap on the target within a tolerance.
    """
    if snap:
        extrapolation = _get_extrapolated_line(
            coords[-4:] if len(coords.shape) == 1 else coords[-2:].flatten(),
            tolerance,
        )
        int_idx = target.sindex.query(extrapolation, predicate="intersects")
        intersection = shapely.intersection(
            target.iloc[int_idx].geometry.array, extrapolation
        )
        if intersection.size > 0:
            if len(intersection) > 1:
                distances = {}
                ix = 0
                for p in intersection:
                    distance = shapely.distance(p, shapely.points(coords[-1]))
                    distances[ix] = distance
                    ix = ix + 1
                minimal = min(distances.items(), key=operator.itemgetter(1))[0]
                new_point_coords = shapely.get_coordinates(intersection[minimal])

            else:
                new_point_coords = shapely.get_coordinates(intersection[0])
            coo = np.append(coords, new_point_coords)
            new = np.reshape(coo, (len(coo) // 2, 2))

            return new
        return coords

    extrapolation = _get_extrapolated_line(
        coords[-4:] if len(coords.shape) == 1 else coords[-2:].flatten(),
        tolerance,
        point=True,
    )
    return np.vstack([coords, extrapolation])


def _get_extrapolated_line(coords, tolerance, point=False):
    """
    Creates a shapely line extrapoled in p1->p2 direction.
    """
    p1 = coords[:2]
    p2 = coords[2:]
    a = p2

    # defining new point based on the vector between existing points
    if p1[0] >= p2[0] and p1[1] >= p2[1]:
        b = (
            p2[0]
            - tolerance
            * math.cos(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
            p2[1]
            - tolerance
            * math.sin(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
        )
    elif p1[0] <= p2[0] and p1[1] >= p2[1]:
        b = (
            p2[0]
            + tolerance
            * math.cos(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
            p2[1]
            - tolerance
            * math.sin(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
        )
    elif p1[0] <= p2[0] and p1[1] <= p2[1]:
        b = (
            p2[0]
            + tolerance
            * math.cos(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
            p2[1]
            + tolerance
            * math.sin(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
        )
    else:
        b = (
            p2[0]
            - tolerance
            * math.cos(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
            p2[1]
            + tolerance
            * math.sin(
                math.atan(
                    math.fabs(p1[1] - p2[1] + 0.000001)
                    / math.fabs(p1[0] - p2[0] + 0.000001)
                )
            ),
        )
    if point:
        return b
    return shapely.linestrings([a, b])


def _polygonize_ifnone(edges, polys):
    if polys is None:
        pre_polys = polygonize(edges.geometry)
        polys = gpd.GeoDataFrame(geometry=list(pre_polys), crs=edges.crs)
    return polys


def _selecting_rabs_from_poly(
    gdf,
    area_col="area",
    circom_threshold=0.7,
    area_threshold=0.85,
    include_adjacent=True,
    diameter_factor=1.5,
):
    """
    From a GeoDataFrame of polygons, returns a GDF of polygons that are
    above the Circular Compactness threshold.

    Return
    ________
    GeoDataFrames : roundabouts and adjacent polygons
    """
    # calculate parameters
    if area_col == "area":
        gdf.loc[:, area_col] = gdf.geometry.area
    circom_serie = CircularCompactness(gdf, area_col).series
    # selecting roundabout polygons based on compactness
    mask = circom_serie > circom_threshold
    rab = gdf[mask]
    # exclude those above the area threshold
    area_threshold_val = gdf.area.quantile(area_threshold)
    rab = rab[rab[area_col] < area_threshold_val]

    if include_adjacent is True:
        bounds = rab.geometry.bounds
        rab = pd.concat([rab, bounds], axis=1)
        rab["deltax"] = rab.maxx - rab.minx
        rab["deltay"] = rab.maxy - rab.miny
        rab["rab_diameter"] = rab[["deltax", "deltay"]].max(axis=1)

        # selecting the adjacent areas that are of smaller than itself
        rab_adj = gpd.sjoin(gdf, rab, predicate="intersects")

        area_right = area_col + "_right"
        area_left = area_col + "_left"
        area_mask = rab_adj[area_right] >= rab_adj[area_left]
        rab_adj = rab_adj[area_mask]
        rab_adj.index.name = "index"

        # adding a hausdorff_distance threshold
        rab_adj["hdist"] = 0.0
        # TODO: (should be a way to vectorize)
        for i, group in rab_adj.groupby("index_right"):
            for g in group.itertuples():
                hdist = g.geometry.hausdorff_distance(rab.loc[i].geometry)
                rab_adj.loc[g.Index, "hdist"] = hdist

        rab_plus = rab_adj[rab_adj.hdist < (rab_adj.rab_diameter * diameter_factor)]

    else:
        rab["index_right"] = rab.index
        rab_plus = rab

    # only keeping relevant fields
    geom_col = rab_plus.geometry.name
    rab_plus = rab_plus[[geom_col, "index_right"]]

    return rab_plus


def _rabs_center_points(gdf, center_type="centroid"):
    """
    From a selection of roundabouts, returns an aggregated GeoDataFrame
    per roundabout with extra column with center_type.
    """
    # temporary DataFrame where geometry is the array of shapely geometries
    # Hack until shapely 2.0 is out.
    # TODO: replace shapely with shapely 2.0
    tmp = pd.DataFrame(gdf.copy())  # creating a copy avoids warnings
    tmp["geometry"] = tmp.geometry.array

    shapely_geoms = (
        tmp.groupby("index_right")
        .geometry.apply(shapely.multipolygons)
        .rename("geometry")
    )
    shapely_geoms = shapely.make_valid(shapely_geoms)

    rab_multipolygons = gpd.GeoDataFrame(shapely_geoms, crs=gdf.crs)
    # make_valid is transforming the multipolygons into geometry collections because of
    # shared edges

    if center_type == "centroid":
        # geometry centroid of the actual circle
        rab_multipolygons["center_pt"] = gdf[
            gdf.index == gdf.index_right
        ].geometry.centroid

    elif center_type == "mean":
        coords, idxs = shapely.get_coordinates(shapely_geoms, return_index=True)
        means = {}
        for i in np.unique(idxs):
            tmps = coords[idxs == i]
            target_idx = rab_multipolygons.index[i]
            means[target_idx] = Point(tmps.mean(axis=0))

        rab_multipolygons["center_pt"] = gpd.GeoSeries(means, crs=gdf.crs)

    # centerpoint of minimum_bounding_circle
    # TODO
    # minimun_bounding_circle() should be available in Shapely 2.0.

    return rab_multipolygons


def _coins_filtering_many_incoming(incoming_many, angle_threshold=0):
    """
    Used only for the cases when more than one incoming line touches the
    roundabout.
    """
    idx_out_many_incoming = []
    # For each new connection, evaluate COINS and select the group from which the new
    # line belongs
    # TODO ideally use the groupby object on line_wkt used earlier
    for _g, x in incoming_many.groupby("line_wkt"):
        gs = gpd.GeoSeries(pd.concat([x.geometry, x.line]), crs=incoming_many.crs)
        gdf = gpd.GeoDataFrame(geometry=gs)
        gdf = gdf.drop_duplicates()

        coins = COINS(gdf, angle_threshold=angle_threshold)
        group_series = coins.stroke_attribute()
        gdf["coins_group"] = group_series
        # selecting the incoming and its extension
        coins_group_filter = gdf.groupby("coins_group").count() == 1
        f = gdf.coins_group.map(coins_group_filter.geometry)
        idxs_remove = gdf[f].index
        idx_out_many_incoming.extend(idxs_remove)

    incoming_many_reduced = incoming_many.drop(idx_out_many_incoming, axis=0)

    return incoming_many_reduced


def _selecting_incoming_lines(rab_multipolygons, edges, angle_threshold=0):
    """Selecting only the lines that are touching but not covered by
    the ``rab_plus``.
    If more than one LineString is incoming to ``rab_plus``, COINS algorithm
    is used to select the line to be extended further.
    """
    # selecting the lines that are touching but not covered by
    touching = gpd.sjoin(edges, rab_multipolygons, predicate="touches")
    if GPD_GE_013:
        edges_idx, _ = rab_multipolygons.sindex.query(
            edges.geometry, predicate="covered_by"
        )
    else:
        edges_idx, _ = rab_multipolygons.sindex.query_bulk(
            edges.geometry, predicate="covered_by"
        )
    idx_drop = edges.index.take(edges_idx)
    touching_idx = touching.index
    ls = list(set(touching_idx) - set(idx_drop))

    incoming = touching.loc[ls]

    # figuring out which ends of incoming edges need to be connected to the center_pt
    incoming["first_pt"] = incoming.geometry.apply(lambda x: Point(x.coords[0]))
    incoming["dist_first_pt"] = incoming.center_pt.distance(incoming.first_pt)
    incoming["last_pt"] = incoming.geometry.apply(lambda x: Point(x.coords[-1]))
    incoming["dist_last_pt"] = incoming.center_pt.distance(incoming.last_pt)
    lines = []
    for _i, row in incoming.iterrows():
        if row.dist_first_pt < row.dist_last_pt:
            lines.append(LineString([row.first_pt, row.center_pt]))
        else:
            lines.append(LineString([row.last_pt, row.center_pt]))
    incoming["line"] = gpd.GeoSeries(lines, index=incoming.index, crs=edges.crs)

    # checking if there are more than one incoming lines arriving to the same point
    # which would create several new lines
    incoming["line_wkt"] = incoming.line.to_wkt()
    grouped_lines = incoming.groupby(["line_wkt"])["line_wkt"]
    count_s = grouped_lines.count()

    # separating the incoming roads that come on their own to those that come in groups
    filter_count_one = pd.DataFrame(count_s[count_s == 1])
    filter_count_many = pd.DataFrame(count_s[count_s > 1])
    incoming_ones = pd.merge(
        incoming, filter_count_one, left_on="line_wkt", right_index=True, how="inner"
    )
    incoming_many = pd.merge(
        incoming, filter_count_many, left_on="line_wkt", right_index=True, how="inner"
    )
    incoming_many_reduced = _coins_filtering_many_incoming(
        incoming_many, angle_threshold=angle_threshold
    )

    incoming_all = gpd.GeoDataFrame(
        pd.concat([incoming_ones, incoming_many_reduced]), crs=edges.crs
    )

    return incoming_all, idx_drop


def _ext_lines_to_center(edges, incoming_all, idx_out):
    """
    Extends the LineStrings geometries to the centerpoint defined by
    _rabs_center_points. Also deletes the lines that originally defined the roundabout.
    Creates a new column labled with the 'rab' number.

    Returns
    -------
    GeoDataFrame
        GeoDataFrame with updated geometry
    """

    incoming_all["geometry"] = incoming_all.apply(
        lambda row: linemerge([row.geometry, row.line]), axis=1
    )
    new_edges = edges.drop(idx_out, axis=0)

    # creating a unique group label for returned gdf
    _, inv = np.unique(incoming_all.index_right, return_inverse=True)
    incoming_label = pd.Series(inv, index=incoming_all.index)
    incoming_label = incoming_label[~incoming_label.index.duplicated(keep="first")]

    # maintaining the same gdf shape as the original
    incoming_all = incoming_all[edges.columns]
    new_edges = pd.concat([new_edges, incoming_all])

    # adding a new column to match
    new_edges["simplification_group"] = incoming_label.astype("Int64")

    return new_edges


def roundabout_simplification(
    edges,
    polys=None,
    area_col="area",
    circom_threshold=0.7,
    area_threshold=0.85,
    include_adjacent=True,
    diameter_factor=1.5,
    center_type="centroid",
    angle_threshold=0,
):
    """
    Selects the roundabouts from ``polys`` to create a center point to merge all
    incoming edges. If None is passed, the function will perform shapely polygonization.

    All ``edges`` attributes are preserved and roundabouts are deleted.
    Note that some attributes, like length, may no longer reflect the reality of newly
    constructed geometry.

    If ``include_adjacent`` is True, adjacent polygons to the actual roundabout are
    also selected for simplification if two conditions are met:

    - the area of adjacent polygons is less than the actual roundabout
    - adjacent polygons do not extend beyond a factor of the diameter of the actual
      roundabout. This uses hausdorff_distance algorithm.

    Parameters
    ----------
    edges : GeoDataFrame
        GeoDataFrame containing LineString geometry of urban network
    polys : GeoDataFrame
        GeoDataFrame containing Polygon geometry derived from polygonyzing ``edges``
        GeoDataFrame.
    area_col : string
        Column name containing area values if ``polys`` GeoDataFrame contains such
        information. Otherwise, it will
    circom_threshold : float (default 0.7)
        Circular compactness threshold to select roundabouts from ``polys``
        GeoDataFrame. Polygons with a higher or equal threshold value will be considered
        for simplification.
    area_threshold : float (default 0.85)
        Percentile threshold value from the area of ``polys`` to leave as input
        geometry. Polygons with a higher or equal threshold will be considered as urban
        blocks not considered for simplification.
    include_adjacent : boolean (default True)
        Adjacent polygons to be considered also as part of the simplification.
    diameter_factor : float (default 1.5)
        The factor to be applied to the diameter of each roundabout that determines how
        far an adjacent polygon can stretch until it is no longer considered part of the
        overall roundabout group. Only applyies when include_adjacent = True.
    center_type : string (default 'centroid')
        Method to use for converging the incoming LineStrings. Current list of options
        available : 'centroid', 'mean'. - 'centroid': selects the centroid of the actual
        roundabout (ignoring adjacent geometries) - 'mean': calculates the mean
        coordinates from the points of polygons (including adjacent geometries)
    angle_threshold : int, float (default 0)
        The angle threshold for the COINS algorithm. Only used when multiple incoming
        LineStrings arrive at the same Point to the roundabout or to the adjacent
        polygons if set as True. eg. when two 'edges' touch the roundabout at the same
        point, COINS algorithm will evaluate which of those incoming lines should be
        extended according to their deflection angle. Segments will only be considered a
        part of the same street if the deflection angle is above the threshold.

    Returns
    -------
    GeoDataFrame
        GeoDataFrame with an updated geometry and an additional column labeling modified
        edges.
    """
    if len(edges[edges.geom_type != "LineString"]) > 0:
        raise TypeError(
            "Only LineString geometries are allowed. "
            "Try using the `explode()` method to explode MultiLineStrings."
        )

    polys = _polygonize_ifnone(edges, polys)
    rab = _selecting_rabs_from_poly(
        polys,
        area_col=area_col,
        circom_threshold=circom_threshold,
        area_threshold=area_threshold,
        include_adjacent=include_adjacent,
        diameter_factor=diameter_factor,
    )
    rab_multipolygons = _rabs_center_points(rab, center_type=center_type)
    incoming_all, idx_drop = _selecting_incoming_lines(
        rab_multipolygons, edges, angle_threshold=angle_threshold
    )
    output = _ext_lines_to_center(edges, incoming_all, idx_drop)

    return output


def consolidate_intersections(
    graph,
    tolerance=30,
    rebuild_graph=True,
    rebuild_edges_method="spider",
    x_att="x",
    y_att="y",
    edge_from_att="from",
    edge_to_att="to",
):
    """
    Consolidate close street intersections into a single node, collapsing short edges.

    If rebuild_graph is True, new edges are drawn according to ``rebuild_edges_method``
    which is one of:

    1. Extension reconstruction:
        Edges are linearly extended from original endpoints until the new nodes. This
        method preserves most faithfully the network geometry but can result in
        overlapping geometry.
    2. Spider-web reconstruction:
        Edges are cropped within a buffer of the new endpoints and linearly extended
        from there. This method improves upon linear reconstruction by mantaining, when
        possible, network planarity.
    3. Euclidean reconstruction:
        Edges are ignored and new edges are built as straight lines between new origin
        and new destination. This method ignores geometry, but efficiently preserves
        adjacency.

    If ``rebuild_graph`` is False, graph is returned with consolidated nodes but without
    reconstructed edges i.e. graph is intentionally disconnected.

    Graph must be configured so that

    1. All nodes have attributes determining their x and y coordinates;
    2. All edges have attributes determining their origin, destination, and geometry.

    Parameters
    ----------
    graph : Networkx.Graph, Networkx.DiGraph, Networkx.MultiGraph, or
        Networkx.MultiDiGraph
    tolerance : float, default 30
        distance in network units below which nodes will be consolidated
    rebuild_graph : bool
    rebuild_edges_method : str
        'extend' or 'spider' or 'euclidean', ignored if rebuild_graph is False
    x_att : str
        node attribute with the valid x-coordinate
    y_att : str
        node attribute with the valid y-coordinate
    edge_from_att : str
        edge attribute with the valid origin node id
    edge_to_att : str
        edge attribute with the valid destination node id

    Returns
    -------
    Networkx.MultiGraph or Networkx.MultiDiGraph
        directionality inferred from input type

    """
    # Collect nodes and their data:
    nodes, nodes_dict = zip(*graph.nodes(data=True), strict=False)
    nodes_df = pd.DataFrame(nodes_dict, index=nodes)
    graph_crs = graph.graph.get("crs")

    # Create a graph without the edges above a certain length and clean it
    #  from isolated nodes (the unsimplifiable nodes):
    components_graph = deepcopy(graph)
    components_graph.remove_edges_from(
        [
            edge
            for edge in graph.edges(keys=True, data=True)
            if edge[-1]["length"] > tolerance
        ]
    )
    isolated_nodes_list = list(nx.isolates(components_graph))
    components_graph.remove_nodes_from(isolated_nodes_list)

    # The connected components of this graph are node clusters we must individually
    #  simplify. We collect them in a dataframe and retrieve node properties (x, y
    #  coords mainly) from the original graph.
    components = nx.connected_components(components_graph)
    components_dict = dict(enumerate(components, start=max(nodes) + 1))
    nodes_to_merge_dict = {
        node: cpt for cpt, nodes in components_dict.items() for node in nodes
    }
    new_nodes_df = pd.DataFrame.from_dict(
        nodes_to_merge_dict, orient="index", columns=["cluster"]
    )
    nodes_to_merge_df = pd.concat(
        [new_nodes_df, nodes_df[[x_att, y_att]]], axis=1, join="inner"
    )

    # The two node attributes we need for the clusters are the position of the cluster
    #  centroids. Those are obtained by averaging the x and y columns. We also add
    # . attribtues referring to the original node ids in every cluster:
    cluster_centroids_df = nodes_to_merge_df.groupby("cluster").mean()
    cluster_centroids_df["simplified"] = True
    cluster_centroids_df["original_node_ids"] = cluster_centroids_df.index.map(
        components_dict
    )
    cluster_geometries = gpd.points_from_xy(
        cluster_centroids_df[x_att], cluster_centroids_df[y_att]
    )
    cluster_gdf = gpd.GeoDataFrame(
        cluster_centroids_df, crs=graph_crs, geometry=cluster_geometries
    )
    cluster_nodes_list = list(cluster_gdf.to_dict("index").items())

    # Create a simplified graph object:
    simplified_graph = graph.copy()

    # Rebuild edges if necessary:
    if rebuild_graph:
        rebuild_edges_method = rebuild_edges_method.lower()
        simplified_graph.graph["approach"] = "primal"
        edges_gdf = nx_to_gdf(simplified_graph, points=False, lines=True)
        simplified_edges = _get_rebuilt_edges(
            edges_gdf,
            nodes_to_merge_dict,
            cluster_gdf,
            method=rebuild_edges_method,
            buffer=1.5 * tolerance,
            edge_from_att=edge_from_att,
            edge_to_att=edge_to_att,
        )

    # Replacing the collapsed nodes with centroids and adding edges:
    simplified_graph.remove_nodes_from(nodes_to_merge_df.index)
    simplified_graph.add_nodes_from(cluster_nodes_list)
    if rebuild_graph:
        simplified_graph.add_edges_from(simplified_edges)

    return simplified_graph


def _get_rebuilt_edges(
    edges_gdf,
    nodes_dict,
    cluster_gdf,
    method="spider",
    buffer=45,
    edge_from_att="from",
    edge_to_att="to",
):
    """
    Update origin and destination on network edges when original endpoints were replaced
    by a
      consolidated node cluster. New edges are drawn according to method which is one
      of:

    1. Extension reconstruction:
        Edges are linearly extended from original endpoints until the new nodes. This
        method preserves most faithfully the network geometry.
    2. Spider-web reconstruction:
        Edges are cropped within a buffer of the new endpoints and linearly extended
        from there. This method improves upon linear reconstruction by mantaining, when
        possible, network planarity.
    3. Euclidean reconstruction:
        Edges are ignored and new edges are built as straightlines between new origin
        and new destination. This method ignores geometry, but efficiently preserves
        adjacency.

    Parameters
    ----------
    edges_gdf : GeoDataFrame
        GeoDataFrame containing LineString geometry and columns determining origin
        and destination node ids
    nodes_dict : dict
        Dictionary whose keys are node ids and values are the corresponding consolidated
        node cluster ids. Only consolidated nodes are in the dictionary.
    cluster_gdf : GeoDataFrame
        GeoDataFrame containing consolidated node ids.
    method: string
        'extension' or 'spider' or 'euclidean'
    buffer : float
        distance to buffer consolidated nodes in the Spider-web reconstruction
    edge_from_att : str
        edge attribute with the valid origin node id
    edge_to_att : str
        edge attribute with the valid destination node id

    Returns
    ----------
    List
        list of edges that should be added to the network. Edges are in the format
        (origin_id, destination_id, data), where data is inferred from edges_gdf

    """
    # Determine what endpoints were made into clusters:
    edges_gdf["origin_cluster"] = edges_gdf[edge_from_att].apply(
        lambda u: nodes_dict.get(u, -1)
    )
    edges_gdf["destination_cluster"] = edges_gdf[edge_to_att].apply(
        lambda v: nodes_dict.get(v, -1)
    )

    # Determine what edges need to be simplified (either between diff.
    #  clusters or self-loops in a cluster):
    edges_tosimplify_gdf = edges_gdf.query(
        "origin_cluster != destination_cluster or "
        f"(('{edge_to_att}' == '{edge_from_att}') and origin_cluster >= 0)"
    )

    # Determine the new point geometries (when exists):
    edges_tosimplify_gdf = edges_tosimplify_gdf.assign(
        new_origin_pt=edges_tosimplify_gdf.origin_cluster.map(
            cluster_gdf.geometry, None
        )
    )
    edges_tosimplify_gdf = edges_tosimplify_gdf.assign(
        new_destination_pt=edges_tosimplify_gdf.destination_cluster.map(
            cluster_gdf.geometry, None
        )
    )

    # Determine the new geometry according to the simplification method:
    if method == "extend":
        edges_simplified_geometries = edges_tosimplify_gdf.apply(
            lambda edge: _extension_simplification(
                edge.geometry, edge.new_origin_pt, edge.new_destination_pt
            ),
            axis=1,
        )
        edges_simplified_gdf = edges_tosimplify_gdf.assign(
            new_geometry=edges_simplified_geometries
        )
    elif method == "euclidean":
        edges_simplified_geometries = edges_tosimplify_gdf.apply(
            lambda edge: _euclidean_simplification(
                edge.geometry, edge.new_origin_pt, edge.new_destination_pt
            ),
            axis=1,
        )
        edges_simplified_gdf = edges_tosimplify_gdf.assign(
            new_geometry=edges_simplified_geometries
        )
    elif method == "spider":
        edges_simplified_geometries = edges_tosimplify_gdf.apply(
            lambda edge: _spider_simplification(
                edge.geometry, edge.new_origin_pt, edge.new_destination_pt, buffer
            ),
            axis=1,
        )
        edges_simplified_gdf = edges_tosimplify_gdf.assign(
            new_geometry=edges_simplified_geometries
        )
    else:
        msg = (
            f"Simplification '{method}' not recognized. See documentation for options."
        )
        raise ValueError(msg)

    # Rename and update the columns:
    cols_rename = {
        edge_from_att: "original_from",
        edge_to_att: "original_to",
        "origin_cluster": edge_from_att,
        "destination_cluster": edge_to_att,
        "geometry": "original_geometry",
    }
    new_edges_gdf = edges_simplified_gdf.rename(cols_rename, axis=1)

    cols_drop = ["new_origin_pt", "new_destination_pt"]
    new_edges_gdf = new_edges_gdf.drop(columns=cols_drop)

    new_edges_gdf = new_edges_gdf.set_geometry("new_geometry")
    new_edges_gdf.loc[:, "length"] = new_edges_gdf.length

    # Update the indices:
    new_edges_gdf.loc[:, edge_from_att] = new_edges_gdf[edge_from_att].where(
        new_edges_gdf[edge_from_att] >= 0, new_edges_gdf["original_from"]
    )
    new_edges_gdf.loc[:, edge_to_att] = new_edges_gdf[edge_to_att].where(
        new_edges_gdf[edge_to_att] >= 0, new_edges_gdf["original_to"]
    )

    # Get the edge list with (from, to, data):
    new_edges_list = list(
        zip(
            new_edges_gdf[edge_from_att],
            new_edges_gdf[edge_to_att],
            new_edges_gdf.iloc[:, 2:].to_dict("index").values(),
            strict=False,
        )
    )

    return new_edges_list


def _extension_simplification(geometry, new_origin, new_destination):
    """
    Extends edge geometry to new endpoints.

    If either new_origin or new_destination is None, maintains the
      respective current endpoint.

    Parameters
    ----------
    geometry : shapely.LineString
    new_origin : shapely.Point or None
    new_destination: shapely.Point or None

    Returns
    ----------
    shapely.LineString

    """
    # If we are dealing with a self-loop the line has no endpoints:
    if new_origin == new_destination:
        current_node = Point(geometry.coords[0])
        geometry = linemerge([LineString([new_origin, current_node]), geometry])
    # Assuming the line is not closed, we can find its endpoints:
    else:
        current_origin, current_destination = geometry.boundary.geoms
        if new_origin is not None:
            geometry = linemerge([LineString([new_origin, current_origin]), geometry])
        if new_destination is not None:
            geometry = linemerge(
                [geometry, LineString([current_destination, new_destination])]
            )
    return geometry


def _spider_simplification(geometry, new_origin, new_destination, buff=15):
    """
    Extends edge geometry to new endpoints via a "spider-web" method. Breaks
      current geometry within a buffer of the new endpoint and then extends
      it linearly. Useful to maintain planarity.

    If either new_origin or new_destination is None, maintains the
      respective current endpoint.

    Parameters
    ----------
    geometry : shapely.LineString
    new_origin : shapely.Point or None
    new_destination: shapely.Point or None
    buff : float
        distance from new endpoint to break current geometry

    Returns
    ----------
    shapely.LineString

    """
    # If we are dealing with a self-loop the line has no boundary
    # . and we just use the first coordinate:
    if new_origin == new_destination:
        current_node = Point(geometry.coords[0])
        geometry = linemerge([LineString([new_origin, current_node]), geometry])
    # Assuming the line is not closed, we can find its endpoints
    #  via the boundary attribute:
    else:
        current_origin, current_destination = geometry.boundary.geoms
        if new_origin is not None:
            # Create a buffer around the new origin:
            new_origin_buffer = new_origin.buffer(buff)
            # Use shapely.ops.split to break the edge where it
            #  intersects the buffer:
            geometry_split_by_buffer_list = list(
                split(geometry, new_origin_buffer).geoms
            )
            # If only one geometry results, edge does not intersect
            #  buffer and line should connect new origin to old origin
            if len(geometry_split_by_buffer_list) == 1:
                geometry_split_by_buffer = geometry_split_by_buffer_list[0]
                splitting_point = current_origin
            # If more than one geometry, merge all linestrings
            #  but the first and get their origin
            else:
                geometry_split_by_buffer = linemerge(geometry_split_by_buffer_list[1:])
                splitting_point = geometry_split_by_buffer.boundary.geoms[0]
            # Merge this into new geometry:
            additional_line = [LineString([new_origin, splitting_point])]
            # Consider MultiLineStrings separately:
            if geometry_split_by_buffer.geom_type == "MultiLineString":
                geometry = linemerge(
                    additional_line + list(geometry_split_by_buffer.geoms)
                )
            else:
                geometry = linemerge(additional_line + [geometry_split_by_buffer])

        if new_destination is not None:
            # Create a buffer around the new destination:
            new_destination_buffer = new_destination.buffer(buff)
            # Use shapely.ops.split to break the edge where it
            #  intersects the buffer:
            geometry_split_by_buffer_list = list(
                split(geometry, new_destination_buffer).geoms
            )
            # If only one geometry results, edge does not intersect
            # . buffer and line should connect new destination to old destination
            if len(geometry_split_by_buffer_list) == 1:
                geometry_split_by_buffer = geometry_split_by_buffer_list[0]
                splitting_point = current_destination
            # If more than one geometry, merge all linestrings
            #  but the last and get their destination
            else:
                geometry_split_by_buffer = linemerge(geometry_split_by_buffer_list[:-1])
                splitting_point = geometry_split_by_buffer.boundary.geoms[1]
            # Merge this into new geometry:
            additional_line = [LineString([splitting_point, new_destination])]
            # Consider MultiLineStrings separately:
            if geometry_split_by_buffer.geom_type == "MultiLineString":
                geometry = linemerge(
                    list(geometry_split_by_buffer.geoms) + additional_line
                )
            else:
                geometry = linemerge([geometry_split_by_buffer] + additional_line)

    return geometry


def _euclidean_simplification(geometry, new_origin, new_destination):
    """
    Rebuilds edge geometry to new endpoints. Ignores current geometry
      and traces a straight line between new endpoints.

    If either new_origin or new_destination is None, maintains the
      respective current endpoint.

    Parameters
    ----------
    geometry : shapely.LineString
    new_origin : shapely.Point or None
    new_destination : shapely.Point or None

    Returns
    ----------
    shapely.LineString

    """
    # If we are dealing with a self-loop, geometry will be null!
    if new_origin == new_destination:
        geometry = None
    # Assuming the line is not closed, we can find its endpoints:
    else:
        current_origin, current_destination = geometry.boundary.geoms
        if new_origin is not None:
            if new_destination is not None:
                geometry = LineString([new_origin, new_destination])
            else:
                geometry = LineString([new_origin, current_destination])
        else:
            if new_destination is not None:
                geometry = LineString([current_origin, new_destination])
    return geometry


class FaceArtifacts:
    """Identify face artifacts in street networks

    For a given street network composed of transportation-oriented geometry containing
    features representing things like roundabouts, dual carriegaways and complex
    intersections, identify areas enclosed by geometry that is considered a `face
    artifact` as per :cite:`fleischmann2023`. Face artifacts highlight areas with a high
    likelihood of being of non-morphological (e.g. transporation) origin and may require
    simplification prior morphological analysis. See :cite:`fleischmann2023` for more
    details.

    Parameters
    ----------
    gdf : geopandas.GeoDataFrame
        GeoDataFrame containing street network represented as (Multi)LineString geometry
    index : str, optional
        A type of the shape compacntess index to be used. Available are
        ['circlular_compactness', 'isoperimetric_quotient', 'diameter_ratio'], by
        default "circular_compactness"
    height_mins : float, optional
        Required depth of valleys, by default -np.inf
    height_maxs : float, optional
        Required height of peaks, by default 0.008
    prominence : float, optional
        Required prominence of peaks, by default 0.00075

    Attributes
    ----------
    threshold : float
        Identified threshold between face polygons and face artifacts
    face_artifacts : GeoDataFrame
        A GeoDataFrame of geometries identified as face artifacts
    polygons : GeoDataFrame
        All polygons resulting from polygonization of the input gdf with the
        face_artifact_index
    kde : scipy.stats._kde.gaussian_kde
        Representation of a kernel-density estimate using Gaussian kernels.
    pdf : numpy.ndarray
        Probability density function
    peaks : numpy.ndarray
        locations of peaks in pdf
    valleys : numpy.ndarray
        locations of valleys in pdf

    Examples
    --------
    >>> fa = momepy.FaceArtifacts(street_network_prague)
    >>> fa.threshold
    6.9634555986177045
    >>> fa.face_artifacts.head()
                                                 geometry  face_artifact_index
    6   POLYGON ((-744164.625 -1043922.362, -744167.39...             5.112844
    9   POLYGON ((-744154.119 -1043804.734, -744152.07...             6.295660
    10  POLYGON ((-744101.275 -1043738.053, -744103.80...             2.862871
    12  POLYGON ((-744095.511 -1043623.478, -744095.35...             3.712403
    17  POLYGON ((-744488.466 -1044533.317, -744489.33...             5.158554
    """

    def __init__(
        self,
        gdf,
        index="circular_compactness",
        height_mins=-np.inf,
        height_maxs=0.008,
        prominence=0.00075,
    ):
        try:
            from esda import shape
        except (ImportError, ModuleNotFoundError) as err:
            raise ImportError(
                "The `esda` package is required. You can install it using "
                "`pip install esda` or `conda install esda -c conda-forge`."
            ) from err

        # Polygonize street network
        polygons = gpd.GeoSeries(
            shapely.polygonize(  # polygonize
                [gdf.dissolve().geometry.item()]
            )
        ).explode(ignore_index=True)

        # Store geometries as a GeoDataFrame
        self.polygons = gpd.GeoDataFrame(geometry=polygons)
        if index == "circular_compactness":
            self.polygons["face_artifact_index"] = np.log(
                shape.minimum_bounding_circle_ratio(polygons) * polygons.area
            )
        elif index == "isoperimetric_quotient":
            self.polygons["face_artifact_index"] = np.log(
                shape.isoperimetric_quotient(polygons) * polygons.area
            )
        elif index == "diameter_ratio":
            self.polygons["face_artifact_index"] = np.log(
                shape.diameter_ratio(polygons) * polygons.area
            )
        else:
            raise ValueError(
                f"'{index}' is not supported. Use one of ['circlular_compactness', "
                "'isoperimetric_quotient', 'diameter_ratio']"
            )

        # parameters for peak/valley finding
        peak_parameters = {
            "height_mins": height_mins,
            "height_maxs": height_maxs,
            "prominence": prominence,
        }
        mylinspace = np.linspace(
            self.polygons["face_artifact_index"].min(),
            self.polygons["face_artifact_index"].max(),
            1000,
        )

        self.kde = gaussian_kde(
            self.polygons["face_artifact_index"], bw_method="silverman"
        )
        self.pdf = self.kde.pdf(mylinspace)

        # find peaks
        self.peaks, self.d_peaks = find_peaks(
            x=self.pdf,
            height=peak_parameters["height_maxs"],
            threshold=None,
            distance=None,
            prominence=peak_parameters["prominence"],
            width=1,
            plateau_size=None,
        )

        # find valleys
        self.valleys, self.d_valleys = find_peaks(
            x=-self.pdf + 1,
            height=peak_parameters["height_mins"],
            threshold=None,
            distance=None,
            prominence=peak_parameters["prominence"],
            width=1,
            plateau_size=None,
        )

        # check if we have at least 2 peaks
        condition_2peaks = len(self.peaks) > 1

        # check if we have at least 1 valley
        condition_1valley = len(self.valleys) > 0

        conditions = [condition_2peaks, condition_1valley]

        # if both these conditions are true, we find the artifact index
        if all(conditions):
            # find list order of highest peak
            highest_peak_listindex = np.argmax(self.d_peaks["peak_heights"])
            # find index (in linspace) of highest peak
            highest_peak_index = self.peaks[highest_peak_listindex]
            # define all possible peak ranges fitting our definition
            peak_bounds = list(zip(self.peaks[:-1], self.peaks[1:], strict=True))
            peak_bounds_accepted = [b for b in peak_bounds if highest_peak_index in b]
            # find all valleys that lie between two peaks
            valleys_accepted = [
                v_index
                for v_index in self.valleys
                if any(v_index in range(b[0], b[1]) for b in peak_bounds_accepted)
            ]
            # the value of the first of those valleys is our artifact index
            # get the order of the valley
            valley_index = valleys_accepted[0]

            # derive threshold value for given option from index/linspace
            self.threshold = float(mylinspace[valley_index])
            self.face_artifacts = self.polygons[
                self.polygons.face_artifact_index < self.threshold
            ]
        else:
            warnings.warn(
                "No threshold found. Either your dataset it too small or the "
                "distribution of the face artifact index does not follow the "
                "expected shape.",
                UserWarning,
                stacklevel=2,
            )
            self.threshold = None
            self.face_artifacts = None