File: test_distribution.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (214 lines) | stat: -rw-r--r-- 9,120 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import geopandas as gpd
import numpy as np
import pytest
import shapely
from libpysal.weights import Queen
from packaging.version import Version

import momepy as mm


class TestDistribution:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
        self.df_buildings["height"] = np.linspace(10.0, 30.0, 144)
        self.df_buildings["volume"] = mm.Volume(self.df_buildings, "height").series
        self.df_streets["nID"] = mm.unique_id(self.df_streets)
        self.df_buildings["nID"] = mm.get_network_id(
            self.df_buildings, self.df_streets, "nID"
        )

    def test_Orientation(self):
        self.df_buildings["orient"] = mm.Orientation(self.df_buildings).series
        check = 41.05146788287027
        assert self.df_buildings["orient"][0] == pytest.approx(check, abs=1e-3)

        self.df_streets["orient"] = mm.Orientation(self.df_streets).series
        check = 40.7607
        assert self.df_streets["orient"][0] == pytest.approx(check)

    def test_SharedWalls(self):
        self.df_buildings["swr"] = mm.SharedWalls(self.df_buildings).series
        nonconsecutive = self.df_buildings.drop(2)
        result = mm.SharedWalls(nonconsecutive).series
        check = 39.395484381507075
        assert self.df_buildings["swr"][10] == check
        assert result[10] == check

    def test_SharedWallsRatio(self):
        self.df_buildings["swr"] = mm.SharedWallsRatio(self.df_buildings).series
        self.df_buildings["swr_array"] = mm.SharedWallsRatio(
            self.df_buildings, perimeters=self.df_buildings.geometry.length
        ).series
        nonconsecutive = self.df_buildings.drop(2)
        result = mm.SharedWallsRatio(nonconsecutive).series
        check = 0.3424804411228673
        assert self.df_buildings["swr"][10] == check
        assert self.df_buildings["swr_array"][10] == check
        assert result[10] == check

    def test_StreetAlignment(self):
        self.df_buildings["orient"] = orient = mm.Orientation(self.df_buildings).series
        self.df_buildings["street_alignment"] = mm.StreetAlignment(
            self.df_buildings, self.df_streets, "orient", network_id="nID"
        ).series
        self.df_buildings["street_alignment2"] = mm.StreetAlignment(
            self.df_buildings,
            self.df_streets,
            "orient",
            left_network_id="nID",
            right_network_id="nID",
        ).series
        self.df_buildings["street_a_arr"] = mm.StreetAlignment(
            self.df_buildings,
            self.df_streets,
            orient,
            left_network_id=self.df_buildings["nID"],
            right_network_id=self.df_streets["nID"],
        ).series

        with pytest.raises(
            ValueError,
            match=(
                "Network ID not set. Use either network_id or "
                "left_network_id and right_network_id."
            ),
        ):
            self.df_buildings["street_alignment"] = mm.StreetAlignment(
                self.df_buildings, self.df_streets, "orient"
            )
        with pytest.raises(ValueError, match="right_network_id not set."):
            self.df_buildings["street_alignment"] = mm.StreetAlignment(
                self.df_buildings, self.df_streets, "orient", left_network_id="nID"
            )
        with pytest.raises(ValueError, match="left_network_id not set."):
            self.df_buildings["street_alignment"] = mm.StreetAlignment(
                self.df_buildings, self.df_streets, "orient", right_network_id="nID"
            )
        check = 0.29073888476702336
        assert self.df_buildings["street_alignment"][0] == pytest.approx(
            check, abs=1e-3
        )
        assert self.df_buildings["street_alignment2"][0] == pytest.approx(
            check, abs=1e-3
        )
        assert self.df_buildings["street_a_arr"][0] == pytest.approx(check, abs=1e-3)

    def test_CellAlignment(self):
        self.df_buildings["orient"] = blgori = mm.Orientation(self.df_buildings).series
        self.df_tessellation["orient"] = tessori = mm.Orientation(
            self.df_tessellation
        ).series
        self.df_buildings["c_align"] = mm.CellAlignment(
            self.df_buildings, self.df_tessellation, "orient", "orient", "uID", "uID"
        ).series
        self.df_buildings["c_align_array"] = mm.CellAlignment(
            self.df_buildings, self.df_tessellation, blgori, tessori, "uID", "uID"
        ).series
        check = abs(
            self.df_buildings["orient"][0]
            - self.df_tessellation[
                self.df_tessellation["uID"] == self.df_buildings["uID"][0]
            ]["orient"].iloc[0]
        )
        assert self.df_buildings["c_align"][0] == pytest.approx(check)

    def test_Alignment(self):
        self.df_buildings["orient"] = mm.Orientation(self.df_buildings).series
        sw = Queen.from_dataframe(self.df_tessellation, ids="uID")
        self.df_buildings["align_sw"] = mm.Alignment(
            self.df_buildings, sw, "uID", self.df_buildings["orient"]
        ).series
        test_value = (
            22.744936872392813
            if Version(shapely.geos_version_string) < Version("3.12")
            else 18.29842494
        )
        assert self.df_buildings["align_sw"][0] == pytest.approx(test_value, rel=1e-3)
        sw_drop = Queen.from_dataframe(self.df_tessellation[2:], ids="uID")
        assert (
            mm.Alignment(self.df_buildings, sw_drop, "uID", self.df_buildings["orient"])
            .series.isna()
            .any()
        )

    def test_NeighborDistance(self):
        sw = Queen.from_dataframe(self.df_tessellation, ids="uID")
        self.df_buildings["dist_sw"] = mm.NeighborDistance(
            self.df_buildings, sw, "uID"
        ).series
        check = 29.18589019096464
        assert self.df_buildings["dist_sw"][0] == pytest.approx(check)

        sw_drop = Queen.from_dataframe(self.df_tessellation[:-2], ids="uID")
        self.df_buildings["dist_sw"] = mm.NeighborDistance(
            self.df_buildings, sw_drop, "uID"
        ).series
        check = 29.18589019096464
        assert self.df_buildings["dist_sw"][0] == pytest.approx(check)
        assert self.df_buildings["dist_sw"].isna().any()

    def test_MeanInterbuildingDistance(self):
        sw = Queen.from_dataframe(self.df_tessellation, ids="uID")
        self.df_buildings["m_dist"] = mm.MeanInterbuildingDistance(
            self.df_buildings, sw, "uID", order=3
        ).series
        check = 29.305457092042744
        assert self.df_buildings["m_dist"][0] == pytest.approx(check)
        sw_drop = Queen.from_dataframe(self.df_tessellation[2:], ids="uID")
        assert (
            mm.MeanInterbuildingDistance(self.df_buildings, sw_drop, "uID")
            .series.isna()
            .any()
        )

    def test_NeighboringStreetOrientationDeviation(self):
        self.df_streets["dev"] = mm.NeighboringStreetOrientationDeviation(
            self.df_streets
        ).series
        check = 7.527840590385933
        assert self.df_streets["dev"].mean() == pytest.approx(check)

    def test_BuildingAdjacency(self):
        sw = Queen.from_dataframe(
            self.df_buildings, ids="uID", silence_warnings=True, use_index=False
        )
        swh = mm.sw_high(k=3, gdf=self.df_tessellation, ids="uID")
        self.df_buildings["adj_sw"] = mm.BuildingAdjacency(
            self.df_buildings,
            spatial_weights=sw,
            unique_id="uID",
            spatial_weights_higher=swh,
        ).series
        self.df_buildings["adj_sw_none"] = mm.BuildingAdjacency(
            self.df_buildings, unique_id="uID", spatial_weights_higher=swh
        ).series
        check = 0.2613824113909074
        assert self.df_buildings["adj_sw"].mean() == pytest.approx(check)
        assert self.df_buildings["adj_sw_none"].mean() == pytest.approx(check)
        swh_drop = mm.sw_high(k=3, gdf=self.df_tessellation[2:], ids="uID")
        assert (
            mm.BuildingAdjacency(
                self.df_buildings, unique_id="uID", spatial_weights_higher=swh_drop
            )
            .series.isna()
            .any()
        )

    def test_Neighbors(self):
        sw = Queen.from_dataframe(self.df_tessellation, ids="uID")
        sw_drop = Queen.from_dataframe(self.df_tessellation[2:], ids="uID")
        self.df_tessellation["nei_sw"] = mm.Neighbors(
            self.df_tessellation, sw, "uID"
        ).series
        self.df_tessellation["nei_wei"] = mm.Neighbors(
            self.df_tessellation, sw, "uID", weighted=True
        ).series
        check = 5.180555555555555
        check_w = 0.029066398893536072
        assert self.df_tessellation["nei_sw"].mean() == check
        assert self.df_tessellation["nei_wei"].mean() == check_w
        assert mm.Neighbors(self.df_tessellation, sw_drop, "uID").series.isna().any()