File: test_elements.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (290 lines) | stat: -rw-r--r-- 10,810 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import uuid
from random import shuffle

import geopandas as gpd
import numpy as np
import pandas as pd
import pytest
from geopandas.testing import assert_geodataframe_equal
from packaging.version import Version
from pandas.testing import assert_index_equal
from shapely import affinity
from shapely.geometry import LineString, MultiPoint, Polygon

import momepy as mm

GPD_GE_013 = Version(gpd.__version__) >= Version("0.13.0")


class TestElements:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
        self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.df_streets["nID"] = range(len(self.df_streets))
        self.limit = mm.buffered_limit(self.df_buildings, 50)
        self.enclosures = mm.enclosures(
            self.df_streets,
            gpd.GeoSeries([self.limit.exterior], crs=self.df_streets.crs),
        )

    def test_Tessellation(self):
        tes = mm.Tessellation(self.df_buildings, "uID", self.limit, segment=2)
        tessellation = tes.tessellation
        assert len(tessellation) == len(self.df_tessellation)
        bands = mm.Tessellation(
            self.df_streets, "nID", mm.buffered_limit(self.df_streets, 50), segment=5
        ).tessellation
        assert len(bands) == len(self.df_streets)

    def test_enclosed_tess(self):
        #  test_enclosed_tessellation
        enc1 = mm.Tessellation(
            self.df_buildings, "uID", enclosures=self.enclosures
        ).tessellation
        assert len(enc1) == 155
        assert isinstance(enc1, gpd.GeoDataFrame)

        enc1_loop = mm.Tessellation(
            self.df_buildings, "uID", enclosures=self.enclosures, use_dask=False
        ).tessellation
        assert len(enc1) == 155
        assert isinstance(enc1, gpd.GeoDataFrame)

        assert len(enc1_loop) == 155
        assert isinstance(enc1_loop, gpd.GeoDataFrame)

        assert_geodataframe_equal(enc1, enc1_loop)

    def test_limit_enclosures_combo_error(self):
        with pytest.raises(ValueError, match="Both `limit` and `enclosures` cannot"):
            mm.Tessellation(
                self.df_buildings, "uID", limit=self.limit, enclosures=self.enclosures
            )

    def test_custom_enclosure_id(self):
        # non-standard enclosure ids
        encl = self.enclosures.copy()
        ids = list(range(len(encl) * 2))
        shuffle(ids)
        encl["eID"] = ids[: len(encl)]
        encl.index = ids[: len(encl)]
        enc = mm.Tessellation(self.df_buildings, "uID", enclosures=encl).tessellation
        assert len(enc) == 155
        assert isinstance(enc, gpd.GeoDataFrame)

    def test_erroroneous_geom(self):
        df = self.df_buildings
        b = df.total_bounds
        x = np.mean([b[0], b[2]])
        y = np.mean([b[1], b[3]])

        df = pd.concat(
            [
                df,
                gpd.GeoDataFrame(
                    {"uID": [145, 146, 147]},
                    geometry=[
                        Polygon([(x, y), (x, y + 1), (x + 1, y)]),
                        MultiPoint([(x, y), (x + 1, y)]).buffer(0.55),
                        affinity.rotate(df.geometry.iloc[0], 12),
                    ],
                    index=[144, 145, 146],
                    crs=df.crs,
                ),
            ]
        )

        with (
            pytest.warns(
                UserWarning, match="Tessellation does not fully match buildings."
            ),
            pytest.warns(
                UserWarning, match="Tessellation contains MultiPolygon elements."
            ),
        ):
            tess = mm.Tessellation(df, "uID", self.limit)
            assert tess.collapsed == {145}
            assert len(tess.multipolygons) == 3

    def test_crs_error(self):
        with pytest.raises(ValueError, match="Geometry is in a geographic CRS"):
            mm.Tessellation(self.df_buildings.to_crs(4326), "uID", self.limit)

    def test_Blocks(self):
        blocks = mm.Blocks(
            self.df_tessellation, self.df_streets, self.df_buildings, "bID", "uID"
        )
        assert not blocks.tessellation_id.isna().any()
        assert not blocks.buildings_id.isna().any()
        assert len(blocks.blocks) == 8

        with pytest.raises(ValueError, match="'uID' column cannot be"):
            mm.Blocks(
                self.df_tessellation, self.df_streets, self.df_buildings, "uID", "uID"
            )

    def test_Blocks_non_default_index(self):
        tessellation = self.df_tessellation.copy()
        tessellation.index = tessellation.index * 3
        buildings = self.df_buildings.copy()
        buildings.index = buildings.index * 5

        blocks = mm.Blocks(tessellation, self.df_streets, buildings, "bID", "uID")

        assert_index_equal(tessellation.index, blocks.tessellation_id.index)
        assert_index_equal(buildings.index, blocks.buildings_id.index)

    def test_Blocks_inner(self):
        streets = self.df_streets.copy()
        streets.loc[35, "geometry"] = (
            self.df_buildings.geometry.iloc[141]
            .representative_point()
            .buffer(20)
            .exterior
        )
        blocks = mm.Blocks(
            self.df_tessellation, streets, self.df_buildings, "bID", "uID"
        )
        assert not blocks.tessellation_id.isna().any()
        assert not blocks.buildings_id.isna().any()
        assert len(blocks.blocks) == 9
        if GPD_GE_013:
            assert (
                len(blocks.blocks.sindex.query(blocks.blocks.geometry, "overlaps")[0])
                == 0
            )
        else:
            assert (
                len(
                    blocks.blocks.sindex.query_bulk(blocks.blocks.geometry, "overlaps")[
                        0
                    ]
                )
                == 0
            )

    def test_get_network_id(self):
        buildings_id = mm.get_network_id(self.df_buildings, self.df_streets, "nID")
        assert not buildings_id.isna().any()

    def test_get_network_id_duplicate(self):
        self.df_buildings["nID"] = range(len(self.df_buildings))
        buildings_id = mm.get_network_id(self.df_buildings, self.df_streets, "nID")
        assert not buildings_id.isna().any()

    def test_get_node_id(self):
        nx = mm.gdf_to_nx(self.df_streets)
        nodes, edges = mm.nx_to_gdf(nx)
        self.df_buildings["nID"] = mm.get_network_id(
            self.df_buildings, self.df_streets, "nID"
        )
        ids1 = mm.get_node_id(self.df_buildings, nodes, edges, "nodeID", "nID")
        assert not ids1.isna().any()

        # test for NaNs within `object` nIDs column
        edges["nID"] = edges["nID"].astype(str)
        _df_buildings = self.df_buildings.copy()
        _df_buildings["nID"] = _df_buildings["nID"].astype(str)
        _df_buildings.loc[[0, 1], "nID"] = pd.NA
        ids2 = mm.get_node_id(_df_buildings, nodes, edges, "nodeID", "nID")
        assert ids2.isna().sum() == 2
        np.testing.assert_array_equal(ids2[ids2.isna()].index, [0, 1])

    def test_get_node_id_ratio(self):
        nx = mm.gdf_to_nx(self.df_streets)
        nodes, edges = mm.nx_to_gdf(nx)

        convex_hull = edges.dissolve().convex_hull.item()
        enclosures = mm.enclosures(
            edges, limit=gpd.GeoSeries([convex_hull], crs=edges.crs)
        )
        enclosed_tess = mm.Tessellation(
            self.df_buildings, unique_id="uID", enclosures=enclosures
        ).tessellation
        links = mm.get_network_ratio(enclosed_tess, edges)
        enclosed_tess[links.columns] = links

        ids = mm.get_node_id(
            enclosed_tess,
            nodes,
            edges,
            node_id="nodeID",
            edge_keys="edgeID_keys",
            edge_values="edgeID_values",
        )

        assert not ids.isna().any()

    def test_enclosures(self):
        basic = mm.enclosures(self.df_streets)
        assert len(basic) == 7
        assert isinstance(basic, gpd.GeoDataFrame)

        limited = mm.enclosures(self.df_streets, self.limit)
        assert len(limited) == 20
        assert isinstance(limited, gpd.GeoDataFrame)

        limited2 = mm.enclosures(
            self.df_streets, gpd.GeoSeries([self.limit], crs=self.df_streets.crs)
        )
        assert len(limited2) == 20
        assert isinstance(limited2, gpd.GeoDataFrame)

        b = self.limit.bounds
        additional_barrier = gpd.GeoSeries(
            [LineString([(b[0], b[1]), (b[2], b[3])])], crs=self.df_streets.crs
        )

        additional = mm.enclosures(
            self.df_streets,
            gpd.GeoSeries([self.limit], crs=self.df_streets.crs),
            [additional_barrier],
        )
        assert len(additional) == 28
        assert isinstance(additional, gpd.GeoDataFrame)

        with pytest.raises(TypeError, match="`additional_barriers` expects a list"):
            additional = mm.enclosures(
                self.df_streets,
                gpd.GeoSeries([self.limit], crs=self.df_streets.crs),
                additional_barrier,
            )

        # test clip
        limit = self.df_streets.dissolve().convex_hull.buffer(-100).item()
        encl = mm.enclosures(
            self.df_streets,
            limit=gpd.GeoSeries([limit], crs=self.df_streets.crs),
            clip=True,
        )
        assert len(encl) == 18

    def test_get_network_ratio(self):
        convex_hull = self.df_streets.dissolve().convex_hull.item()
        enclosures = mm.enclosures(
            self.df_streets, limit=gpd.GeoSeries([convex_hull], crs=self.df_streets.crs)
        )
        enclosed_tess = mm.Tessellation(
            self.df_buildings, unique_id="uID", enclosures=enclosures
        ).tessellation
        links = mm.get_network_ratio(enclosed_tess, self.df_streets, initial_buffer=10)

        assert links.edgeID_values.apply(lambda x: sum(x)).sum() == len(enclosed_tess)
        m = enclosed_tess["uID"] == 110
        assert sorted(links.loc[m].iloc[0]["edgeID_keys"]) == [0, 34]

        # ensure index is preserved
        enclosed_tess.index = [str(uuid.uuid4()) for _ in range(len(enclosed_tess))]
        links2 = mm.get_network_ratio(enclosed_tess, self.df_streets, initial_buffer=10)

        assert_index_equal(enclosed_tess.index, links2.index, check_order=False)
        expected_head = [[0, 34], [34], [34], [0], [0, 15, 3, 14, 4, 7]]
        expected_tail = [[28], [29], [28], [32], [21]]

        for i, idx in enumerate(expected_head):
            assert sorted(links2.edgeID_keys.iloc[i]) == sorted(idx)

        for i, idx in enumerate(expected_tail):
            assert sorted(links2.edgeID_keys.tail(5).iloc[i]) == sorted(idx)