1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
import geopandas as gpd
import pytest
import momepy as mm
class TestGraph:
def setup_method(self):
test_file_path = mm.datasets.get_path("bubenec")
self.df_streets = gpd.read_file(test_file_path, layer="streets")
self.network = mm.gdf_to_nx(self.df_streets)
self.network = mm.node_degree(self.network)
self.dual = mm.gdf_to_nx(self.df_streets, approach="dual")
def test_node_degree(self):
deg1 = mm.node_degree(graph=self.network)
assert deg1.nodes[(1603650.450422848, 6464368.600601688)]["degree"] == 4
def test_meshedness(self):
net = mm.meshedness(self.network)
check = 0.14893617021276595
assert net.nodes[(1603650.450422848, 6464368.600601688)]["meshedness"] == check
assert mm.meshedness(self.network, radius=None) == 0.1320754716981132
def test_mean_node_dist(self):
net = mm.mean_node_dist(self.network)
check = 148.8166441307652
assert net.nodes[(1603650.450422848, 6464368.600601688)]["meanlen"] == check
def test_cds_length(self):
net = mm.cds_length(self.network)
net2 = mm.cds_length(self.network, mode="mean", name="cds_mean")
sumval = 1753.626758955522
mean = 219.20334486944023
assert net.nodes[(1603650.450422848, 6464368.600601688)][
"cds_len"
] == pytest.approx(sumval)
assert net2.nodes[(1603650.450422848, 6464368.600601688)][
"cds_mean"
] == pytest.approx(mean)
with pytest.raises(ValueError, match="Mode 'nonexistent' is not supported. "):
net2 = mm.cds_length(self.network, mode="nonexistent")
assert mm.cds_length(self.network, radius=None) == pytest.approx(
2291.4520621447705
)
def test_mean_node_degree(self):
net = mm.mean_node_degree(self.network)
check = 2.576923076923077
assert net.nodes[(1603650.450422848, 6464368.600601688)]["mean_nd"] == check
assert mm.mean_node_degree(self.network, radius=None) == 2.413793103448276
def test_proportion(self):
net = mm.proportion(self.network, three="three", four="four", dead="dead")
three = 0.23076923076923078
four = 0.2692307692307692
dead = 0.3076923076923077
assert net.nodes[(1603650.450422848, 6464368.600601688)]["dead"] == dead
assert net.nodes[(1603650.450422848, 6464368.600601688)]["four"] == four
assert net.nodes[(1603650.450422848, 6464368.600601688)]["three"] == three
glob = mm.proportion(
self.network, three="three", four="four", dead="dead", radius=None
)
assert glob["dead"] == 0.3793103448275862
assert glob["four"] == 0.2413793103448276
assert glob["three"] == 0.20689655172413793
def test_proportion_error(self):
with pytest.raises(ValueError, match="Nothing to calculate. "):
mm.proportion(self.network)
def test_cyclomatic(self):
net = mm.cyclomatic(self.network)
check = 7
assert net.nodes[(1603650.450422848, 6464368.600601688)]["cyclomatic"] == check
assert mm.cyclomatic(self.network, radius=None) == 7
def test_edge_node_ratio(self):
net = mm.edge_node_ratio(self.network)
check = 1.2307692307692308
assert (
net.nodes[(1603650.450422848, 6464368.600601688)]["edge_node_ratio"]
== check
)
assert mm.edge_node_ratio(self.network, radius=None) == 1.206896551724138
def test_gamma(self):
net = mm.gamma(self.network)
check = 0.4444444444444444
assert net.nodes[(1603650.450422848, 6464368.600601688)]["gamma"] == check
assert mm.gamma(self.network, radius=None) == 0.43209876543209874
def test_closeness_centrality(self):
net = mm.closeness_centrality(self.network, weight="mm_len")
check = 0.0016066095164175716
assert net.nodes[(1603650.450422848, 6464368.600601688)][
"closeness"
] == pytest.approx(check)
net = mm.closeness_centrality(self.network, radius=5, weight=None)
check = 0.27557319223985893
assert net.nodes[(1603650.450422848, 6464368.600601688)][
"closeness"
] == pytest.approx(check)
net2 = mm.closeness_centrality(self.network, weight="mm_len", radius=5)
check2 = 0.0015544070362478774
assert net2.nodes[(1603650.450422848, 6464368.600601688)][
"closeness"
] == pytest.approx(check2)
def test_betweenness_centrality(self):
net = mm.betweenness_centrality(self.network)
net2 = mm.betweenness_centrality(self.network, mode="edges")
angular = mm.betweenness_centrality(self.dual, weight="angle")
with pytest.raises(ValueError, match="Mode 'nonexistent' is not supported. "):
mm.betweenness_centrality(self.network, mode="nonexistent")
node = 0.2413793103448276
edge = 0.16995073891625617
ang_b = 0.16134453781512606
assert net.nodes[(1603650.450422848, 6464368.600601688)]["betweenness"] == node
assert (
net2.edges[
(1603226.9576840235, 6464160.158361825),
(1603039.9632033885, 6464087.491175889),
0,
]["betweenness"]
== edge
)
assert (
angular.nodes[(1603315.3564306537, 6464044.376339891)]["betweenness"]
== ang_b
)
net = mm.betweenness_centrality(self.network, radius=5, weight=None)
check = 53.74999999999999
assert net.nodes[(1603650.450422848, 6464368.600601688)]["betweenness"] == check
net2 = mm.betweenness_centrality(
self.network, radius=5, weight="mm_len", normalized=True
)
check2 = 0.21333333333333335
assert (
net2.nodes[(1603650.450422848, 6464368.600601688)]["betweenness"] == check2
)
def test_straightness_centrality(self):
net = mm.straightness_centrality(self.network)
net2 = mm.straightness_centrality(
self.network, normalized=False, name="nonnorm"
)
g = self.network.copy()
g.add_node(1)
net3 = mm.straightness_centrality(g)
check = 0.8574045143712158
nonnorm = 0.8574045143712158
assert (
net.nodes[(1603650.450422848, 6464368.600601688)]["straightness"] == check
)
assert net2.nodes[(1603650.450422848, 6464368.600601688)]["nonnorm"] == nonnorm
assert (
net3.nodes[(1603650.450422848, 6464368.600601688)]["straightness"] == check
)
net = mm.straightness_centrality(self.network, radius=5, normalized=False)
check = 0.8614261420539604
assert (
net.nodes[(1603650.450422848, 6464368.600601688)]["straightness"] == check
)
def test_mean_nodes(self):
net = mm.straightness_centrality(self.network)
mm.mean_nodes(net, "straightness")
edge = 0.8777302256084243
assert (
net.edges[
(1603226.9576840235, 6464160.158361825),
(1603039.9632033885, 6464087.491175889),
0,
]["straightness"]
== edge
)
def test_clustering(self):
net = mm.clustering(self.network)
check = 0.05555555555555555
assert net.nodes[(1603650.450422848, 6464368.600601688)]["cluster"] == check
def test_subgraph(self):
net = mm.subgraph(self.network)
nodes = mm.nx_to_gdf(net, lines=False)
cols = [
"meshedness",
"cds_length",
"mean_node_degree",
"proportion_3",
"proportion_4",
"proportion_0",
"cyclomatic",
"edge_node_ratio",
"gamma",
"local_closeness",
]
for c in cols:
assert c in nodes.columns
|