1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
import geopandas as gpd
import numpy as np
import pytest
from libpysal.weights import Queen
from pandas.testing import assert_series_equal
from shapely.geometry import Point
import momepy as mm
class TestIntensity:
def setup_method(self):
test_file_path = mm.datasets.get_path("bubenec")
self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
self.df_streets = gpd.read_file(test_file_path, layer="streets")
self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
self.df_streets["nID"] = mm.unique_id(self.df_streets)
self.df_buildings["height"] = np.linspace(10.0, 30.0, 144)
self.df_tessellation["area"] = self.df_tessellation.geometry.area
self.df_buildings["area"] = self.df_buildings.geometry.area
self.df_buildings["fl_area"] = mm.FloorArea(self.df_buildings, "height").series
self.df_buildings["nID"] = mm.get_network_id(
self.df_buildings, self.df_streets, "nID"
)
blocks = mm.Blocks(
self.df_tessellation, self.df_streets, self.df_buildings, "bID", "uID"
)
self.blocks = blocks.blocks
self.df_buildings["bID"] = blocks.buildings_id
self.df_tessellation["bID"] = blocks.tessellation_id
def test_AreaRatio(self):
car = mm.AreaRatio(
self.df_tessellation, self.df_buildings, "area", "area", "uID"
).series
carlr = mm.AreaRatio(
self.df_tessellation,
self.df_buildings,
"area",
"area",
left_unique_id="uID",
right_unique_id="uID",
).series
check = 0.3206556897709747
assert car.mean() == pytest.approx(check)
assert carlr.mean() == pytest.approx(check)
far = mm.AreaRatio(
self.df_tessellation,
self.df_buildings,
self.df_tessellation.area,
self.df_buildings.fl_area,
"uID",
).series
check = 1.910949846262234
assert far.mean() == check
with pytest.raises(ValueError, match="Unique ID not correctly set."):
car = mm.AreaRatio(self.df_tessellation, self.df_buildings, "area", "area")
with pytest.raises(ValueError, match="Unique ID not correctly set."):
car = mm.AreaRatio(
self.df_tessellation,
self.df_buildings,
"area",
"area",
left_unique_id="uID",
)
with pytest.raises(ValueError, match="Unique ID not correctly set."):
car = mm.AreaRatio(
self.df_tessellation,
self.df_buildings,
"area",
"area",
right_unique_id="uID",
)
car_sel = mm.AreaRatio(
self.df_tessellation.iloc[10:20], self.df_buildings, "area", "area", "uID"
).series
assert (car_sel.index == self.df_tessellation.iloc[10:20].index).all()
self.blocks["area"] = self.blocks.geometry.area
car_block = mm.AreaRatio(self.blocks, self.df_buildings, "area", "area", "bID")
assert car_block.series.mean() == pytest.approx(0.27619743, rel=1e-8)
def test_Count(self):
eib = mm.Count(self.blocks, self.df_buildings, "bID", "bID").series
weib = mm.Count(
self.blocks, self.df_buildings, "bID", "bID", weighted=True
).series
weis = mm.Count(
self.df_streets, self.df_buildings, "nID", "nID", weighted=True
).series
check_eib = (
gpd.sjoin(self.df_buildings.drop(columns="bID"), self.blocks)["bID"]
.value_counts()
.sort_index()
)
check_weib = pytest.approx(0.00040170607189453996)
assert_series_equal(check_eib, eib, check_names=False)
assert weib.mean() == check_weib
assert weis.mean() == pytest.approx(0.020524232642849215)
point_gdf = gpd.GeoDataFrame(
{"nID": [0]}, geometry=[Point(1603569.010067892, 6464302.821695424)]
)
with pytest.raises(
TypeError, match="Geometry type does not support weighting."
):
mm.Count(point_gdf, self.blocks, "nID", "bID", weighted=True).series # noqa: B018
def test_Courtyards(self):
courtyards = mm.Courtyards(self.df_buildings).series
sw = Queen.from_dataframe(
self.df_buildings, silence_warnings=True, use_index=False
)
courtyards_wm = mm.Courtyards(self.df_buildings, sw).series
check = 0.6805555555555556
assert courtyards.mean() == check
assert courtyards_wm.mean() == check
def test_BlocksCount(self):
sw = mm.sw_high(k=5, gdf=self.df_tessellation, ids="uID")
count = mm.BlocksCount(self.df_tessellation, "bID", sw, "uID").series
count2 = mm.BlocksCount(
self.df_tessellation, self.df_tessellation.bID, sw, "uID"
).series
unweigthed = mm.BlocksCount(
self.df_tessellation, "bID", sw, "uID", weighted=False
).series
check = 3.142437439120778e-05
check2 = 5.222222222222222
assert count.mean() == check
assert count2.mean() == check
assert unweigthed.mean() == check2
with pytest.raises(
ValueError, match="Attribute 'weighted' needs to be True or False."
):
count = mm.BlocksCount(
self.df_tessellation, "bID", sw, "uID", weighted="yes"
)
sw_drop = mm.sw_high(k=5, gdf=self.df_tessellation[2:], ids="uID")
assert (
mm.BlocksCount(self.df_tessellation, "bID", sw_drop, "uID")
.series.isna()
.any()
)
def test_Reached(self):
count = mm.Reached(self.df_streets, self.df_buildings, "nID", "nID").series
area = mm.Reached(
self.df_streets,
self.df_buildings,
self.df_streets.nID,
self.df_buildings.nID,
mode="sum",
).series
mean = mm.Reached(
self.df_streets, self.df_buildings, "nID", "nID", mode="mean"
).series
std = mm.Reached(
self.df_streets, self.df_buildings, "nID", "nID", mode="std"
).series
area_v = mm.Reached(
self.df_streets,
self.df_buildings,
"nID",
"nID",
mode="sum",
values="fl_area",
).series
mean_v = mm.Reached(
self.df_streets,
self.df_buildings,
"nID",
"nID",
mode="mean",
values="fl_area",
).series
std_v = mm.Reached(
self.df_streets,
self.df_buildings,
"nID",
"nID",
mode="std",
values="fl_area",
).series
sw = mm.sw_high(k=2, gdf=self.df_streets)
count_sw = mm.Reached(
self.df_streets, self.df_buildings, "nID", "nID", sw
).series
assert max(count) == 18
assert max(area) == pytest.approx(18085.45897711331)
assert max(count_sw) == 138
assert max(mean) == pytest.approx(1808.5458977113315)
assert max(std) == pytest.approx(3153.7019229524785)
assert max(area_v) == pytest.approx(79169.31385861784)
assert max(mean_v) == pytest.approx(7916.931385861784)
assert max(std_v) == pytest.approx(8995.18003493457)
def test_NodeDensity(self):
nx = mm.gdf_to_nx(self.df_streets)
nx = mm.node_degree(nx)
nodes, edges, W = mm.nx_to_gdf(nx, spatial_weights=True)
sw = mm.sw_high(k=3, weights=W)
density = mm.NodeDensity(nodes, edges, sw).series
weighted = mm.NodeDensity(
nodes, edges, sw, weighted=True, node_degree="degree"
).series
array = mm.NodeDensity(nodes, edges, W).series
assert density.mean() == pytest.approx(0.005534125924228438)
assert weighted.mean() == pytest.approx(0.010090861332429164)
assert array.mean() == 0.01026753724860306
def test_Density(self):
sw = mm.sw_high(k=3, gdf=self.df_tessellation, ids="uID")
dens = mm.Density(
self.df_tessellation,
self.df_buildings["fl_area"],
sw,
"uID",
self.df_tessellation.area,
).series
dens2 = mm.Density(
self.df_tessellation, self.df_buildings["fl_area"], sw, "uID"
).series
check = 1.661587
assert dens.mean() == pytest.approx(check)
assert dens2.mean() == pytest.approx(check)
sw_drop = mm.sw_high(k=3, gdf=self.df_tessellation[2:], ids="uID")
assert (
mm.Density(
self.df_tessellation, self.df_buildings["fl_area"], sw_drop, "uID"
)
.series.isna()
.any()
)
# island
sw.neighbors[1] = []
dens3 = mm.Density(
self.df_tessellation,
self.df_buildings["fl_area"],
sw,
"uID",
self.df_tessellation.area,
).series
assert dens3.mean() == pytest.approx(1.656420)
|