1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
import math
import geopandas as gpd
import numpy as np
import pytest
from shapely.geometry import MultiLineString, MultiPolygon, Point, Polygon
import momepy as mm
from momepy.shape import _circle_area
class TestShape:
def setup_method(self):
test_file_path = mm.datasets.get_path("bubenec")
self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
self.df_streets = gpd.read_file(test_file_path, layer="streets")
self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
self.df_buildings["height"] = np.linspace(10.0, 30.0, 144)
self.df_buildings["volume"] = mm.Volume(self.df_buildings, "height").series
def test_FormFactor(self):
self.df_buildings["ff"] = mm.FormFactor(
self.df_buildings, "volume", heights="height"
).series
check = 5.4486362624193
assert self.df_buildings["ff"].mean() == pytest.approx(check)
self.df_buildings["ff"] = mm.FormFactor(
self.df_buildings,
mm.Volume(self.df_buildings, "height").series,
areas=self.df_buildings.geometry.area,
heights=self.df_buildings["height"],
).series
assert self.df_buildings["ff"].mean() == pytest.approx(check)
def test_FractalDimension(self):
self.df_buildings["fd"] = mm.FractalDimension(self.df_buildings).series
check = (
2
* math.log(self.df_buildings.geometry[0].length / 4)
/ math.log(self.df_buildings.geometry[0].area)
)
assert self.df_buildings["fd"][0] == check
self.df_buildings["fd2"] = mm.FractalDimension(
self.df_buildings,
areas=self.df_buildings.geometry.area,
perimeters=self.df_buildings.geometry.length,
).series
assert self.df_buildings["fd2"][0] == check
def test_VolumeFacadeRatio(self):
self.df_buildings["peri"] = self.df_buildings.geometry.length
self.df_buildings["vfr"] = mm.VolumeFacadeRatio(
self.df_buildings, "height", "volume", "peri"
).series
check = self.df_buildings.volume[0] / (
self.df_buildings.peri[0] * self.df_buildings.height[0]
)
assert self.df_buildings["vfr"][0] == check
peri = self.df_buildings.geometry.length
volume = mm.Volume(self.df_buildings, "height").series
self.df_buildings["vfr2"] = mm.VolumeFacadeRatio(
self.df_buildings, "height", volume, peri
).series
assert self.df_buildings["vfr2"][0] == check
self.df_buildings["peri"] = self.df_buildings.geometry.length
self.df_buildings["vfr3"] = mm.VolumeFacadeRatio(
self.df_buildings, "height"
).series
assert self.df_buildings["vfr3"][0] == check
def test_CircularCompactness(self):
self.df_buildings["area"] = self.df_buildings.geometry.area
self.df_buildings["circom"] = mm.CircularCompactness(
self.df_buildings, "area"
).series
check = self.df_buildings.area[0] / (
_circle_area(
list(self.df_buildings.geometry[0].convex_hull.exterior.coords)
)
)
assert self.df_buildings["circom"][0] == check
area = self.df_buildings.geometry.area
self.df_buildings["circom2"] = mm.CircularCompactness(
self.df_buildings, area
).series
assert self.df_buildings["circom2"][0] == check
self.df_buildings["circom3"] = mm.CircularCompactness(self.df_buildings).series
assert self.df_buildings["circom3"][0] == check
def test_SquareCompactness(self):
self.df_buildings["sqcom"] = mm.SquareCompactness(self.df_buildings).series
check = (
(4 * math.sqrt(self.df_buildings.geometry.area[0]))
/ (self.df_buildings.geometry.length[0])
) ** 2
assert self.df_buildings["sqcom"][0] == check
self.df_buildings["sqcom2"] = mm.SquareCompactness(
self.df_buildings,
areas=self.df_buildings.geometry.area,
perimeters=self.df_buildings.geometry.length,
).series
assert self.df_buildings["sqcom2"][0] == check
def test_Convexity(self):
self.df_buildings["conv"] = mm.Convexity(self.df_buildings).series
check = (
self.df_buildings.geometry.area[0]
/ self.df_buildings.geometry.convex_hull.area[0]
)
assert self.df_buildings["conv"][0] == check
self.df_buildings["conv2"] = mm.Convexity(
self.df_buildings, areas=self.df_buildings.geometry.area
).series
assert self.df_buildings["conv2"][0] == check
def test_CourtyardIndex(self):
cas = self.df_buildings["cas"] = mm.CourtyardArea(self.df_buildings).series
self.df_buildings["cix"] = mm.CourtyardIndex(self.df_buildings, "cas").series
self.df_buildings["cix_array"] = mm.CourtyardIndex(
self.df_buildings, cas, self.df_buildings.geometry.area
).series
check = self.df_buildings.cas[80] / self.df_buildings.geometry.area[80]
assert self.df_buildings["cix"][80] == check
assert self.df_buildings["cix_array"][80] == check
def test_Rectangularity(self):
self.df_buildings["rect"] = mm.Rectangularity(self.df_buildings).series
self.df_buildings["rect_array"] = mm.Rectangularity(
self.df_buildings, self.df_buildings.geometry.area
).series
check = (
self.df_buildings.geometry[0].area
/ self.df_buildings.geometry[0].minimum_rotated_rectangle.area
)
assert self.df_buildings["rect"][0] == check
assert self.df_buildings["rect_array"][0] == check
def test_ShapeIndex(self):
la = self.df_buildings["la"] = mm.LongestAxisLength(self.df_buildings).series
self.df_buildings["shape_index"] = mm.ShapeIndex(self.df_buildings, "la").series
self.df_buildings["shape_index_array"] = mm.ShapeIndex(
self.df_buildings, la, self.df_buildings.geometry.area
).series
check = math.sqrt(self.df_buildings.area[0] / math.pi) / (
0.5 * self.df_buildings.la[0]
)
assert self.df_buildings["shape_index"][0] == check
assert self.df_buildings["shape_index_array"][0] == check
def test_Corners(self):
self.df_buildings["corners"] = mm.Corners(self.df_buildings).series
check = 24
assert self.df_buildings["corners"][0] == check
def test_Squareness(self):
self.df_buildings["squ"] = mm.Squareness(self.df_buildings).series
check = pytest.approx(3.707, rel=1e-3)
assert self.df_buildings["squ"][0] == check
self.df_buildings["squ"] = mm.Squareness(self.df_buildings.exterior).series
assert self.df_buildings["squ"].isna().all()
df_buildings_multi = self.df_buildings.copy()
df_buildings_multi["geometry"] = df_buildings_multi["geometry"].apply(
lambda geom: MultiPolygon([geom])
)
self.df_buildings["squm"] = mm.Squareness(df_buildings_multi).series
assert self.df_buildings["squm"][0] == check
def test_EquivalentRectangularIndex(self):
self.df_buildings["eri"] = mm.EquivalentRectangularIndex(
self.df_buildings
).series
self.df_buildings["eri_array"] = mm.EquivalentRectangularIndex(
self.df_buildings,
areas=self.df_buildings.geometry.area,
perimeters=self.df_buildings.geometry.length,
).series
check = pytest.approx(0.7879, rel=1e-3)
assert self.df_buildings["eri"][0] == check
assert self.df_buildings["eri_array"][0] == check
def test_Elongation(self):
self.df_buildings["elo"] = mm.Elongation(self.df_buildings).series
check = pytest.approx(0.908, rel=1e-3)
assert self.df_buildings["elo"][0] == check
def test_CentroidCorners(self):
self.df_buildings.loc[144] = [145, Point(0, 0).buffer(10), 0, 0]
self.df_buildings.loc[145] = [
145,
Polygon([s + (0,) for s in Point(0, 0).buffer(10).exterior.coords]),
0,
0,
]
check = pytest.approx(15.961, rel=1e-3)
check_devs = pytest.approx(3.081, rel=1e-3)
cc = mm.CentroidCorners(self.df_buildings)
self.df_buildings["ccd"] = cc.mean
self.df_buildings["ccddev"] = cc.std
assert self.df_buildings["ccd"][0] == check
assert self.df_buildings["ccddev"][0] == check_devs
df_buildings_multi = self.df_buildings.copy()
df_buildings_multi["geometry"] = df_buildings_multi["geometry"].apply(
lambda geom: MultiPolygon([geom])
)
cc = mm.CentroidCorners(df_buildings_multi)
df_buildings_multi["ccd"] = cc.mean
df_buildings_multi["ccddev"] = cc.std
assert df_buildings_multi["ccd"][0] == check
assert df_buildings_multi["ccddev"][0] == check_devs
def test_Linearity(self):
self.df_streets["lin"] = mm.Linearity(self.df_streets).series
euclidean = Point(self.df_streets.geometry[0].coords[0]).distance(
Point(self.df_streets.geometry[0].coords[-1])
)
check = euclidean / self.df_streets.geometry[0].length
assert self.df_streets["lin"][0] == pytest.approx(check, rel=1e-6)
self.df_streets.loc[len(self.df_streets)] = MultiLineString(
[[(0, 0), (-1, 1)], [(10, 10), (11, 11)]]
)
def test_CompactnessWeightedAxis(self):
self.df_buildings["cwa"] = mm.CompactnessWeightedAxis(self.df_buildings).series
self.df_buildings["cwa_array"] = mm.CompactnessWeightedAxis(
self.df_buildings,
areas=self.df_buildings.geometry.area,
perimeters=self.df_buildings.geometry.length,
longest_axis=mm.LongestAxisLength(self.df_buildings).series,
).series
check = pytest.approx(26.327, rel=1e-3)
assert self.df_buildings["cwa"][0] == check
assert self.df_buildings["cwa_array"][0] == check
def test__circle_area(self):
poly = Polygon([(0, 1, 0), (1, 1, 0), (2, 4, 0)])
check = _circle_area(poly.exterior.coords)
assert check == pytest.approx(10.210, rel=1e-3)
|