File: test_shape.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (249 lines) | stat: -rw-r--r-- 10,389 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import math

import geopandas as gpd
import numpy as np
import pytest
from shapely.geometry import MultiLineString, MultiPolygon, Point, Polygon

import momepy as mm
from momepy.shape import _circle_area


class TestShape:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
        self.df_buildings["height"] = np.linspace(10.0, 30.0, 144)
        self.df_buildings["volume"] = mm.Volume(self.df_buildings, "height").series

    def test_FormFactor(self):
        self.df_buildings["ff"] = mm.FormFactor(
            self.df_buildings, "volume", heights="height"
        ).series
        check = 5.4486362624193
        assert self.df_buildings["ff"].mean() == pytest.approx(check)

        self.df_buildings["ff"] = mm.FormFactor(
            self.df_buildings,
            mm.Volume(self.df_buildings, "height").series,
            areas=self.df_buildings.geometry.area,
            heights=self.df_buildings["height"],
        ).series
        assert self.df_buildings["ff"].mean() == pytest.approx(check)

    def test_FractalDimension(self):
        self.df_buildings["fd"] = mm.FractalDimension(self.df_buildings).series
        check = (
            2
            * math.log(self.df_buildings.geometry[0].length / 4)
            / math.log(self.df_buildings.geometry[0].area)
        )
        assert self.df_buildings["fd"][0] == check

        self.df_buildings["fd2"] = mm.FractalDimension(
            self.df_buildings,
            areas=self.df_buildings.geometry.area,
            perimeters=self.df_buildings.geometry.length,
        ).series
        assert self.df_buildings["fd2"][0] == check

    def test_VolumeFacadeRatio(self):
        self.df_buildings["peri"] = self.df_buildings.geometry.length
        self.df_buildings["vfr"] = mm.VolumeFacadeRatio(
            self.df_buildings, "height", "volume", "peri"
        ).series
        check = self.df_buildings.volume[0] / (
            self.df_buildings.peri[0] * self.df_buildings.height[0]
        )
        assert self.df_buildings["vfr"][0] == check

        peri = self.df_buildings.geometry.length
        volume = mm.Volume(self.df_buildings, "height").series
        self.df_buildings["vfr2"] = mm.VolumeFacadeRatio(
            self.df_buildings, "height", volume, peri
        ).series
        assert self.df_buildings["vfr2"][0] == check

        self.df_buildings["peri"] = self.df_buildings.geometry.length
        self.df_buildings["vfr3"] = mm.VolumeFacadeRatio(
            self.df_buildings, "height"
        ).series

        assert self.df_buildings["vfr3"][0] == check

    def test_CircularCompactness(self):
        self.df_buildings["area"] = self.df_buildings.geometry.area
        self.df_buildings["circom"] = mm.CircularCompactness(
            self.df_buildings, "area"
        ).series
        check = self.df_buildings.area[0] / (
            _circle_area(
                list(self.df_buildings.geometry[0].convex_hull.exterior.coords)
            )
        )
        assert self.df_buildings["circom"][0] == check

        area = self.df_buildings.geometry.area
        self.df_buildings["circom2"] = mm.CircularCompactness(
            self.df_buildings, area
        ).series
        assert self.df_buildings["circom2"][0] == check

        self.df_buildings["circom3"] = mm.CircularCompactness(self.df_buildings).series
        assert self.df_buildings["circom3"][0] == check

    def test_SquareCompactness(self):
        self.df_buildings["sqcom"] = mm.SquareCompactness(self.df_buildings).series
        check = (
            (4 * math.sqrt(self.df_buildings.geometry.area[0]))
            / (self.df_buildings.geometry.length[0])
        ) ** 2
        assert self.df_buildings["sqcom"][0] == check

        self.df_buildings["sqcom2"] = mm.SquareCompactness(
            self.df_buildings,
            areas=self.df_buildings.geometry.area,
            perimeters=self.df_buildings.geometry.length,
        ).series

        assert self.df_buildings["sqcom2"][0] == check

    def test_Convexity(self):
        self.df_buildings["conv"] = mm.Convexity(self.df_buildings).series
        check = (
            self.df_buildings.geometry.area[0]
            / self.df_buildings.geometry.convex_hull.area[0]
        )
        assert self.df_buildings["conv"][0] == check

        self.df_buildings["conv2"] = mm.Convexity(
            self.df_buildings, areas=self.df_buildings.geometry.area
        ).series

        assert self.df_buildings["conv2"][0] == check

    def test_CourtyardIndex(self):
        cas = self.df_buildings["cas"] = mm.CourtyardArea(self.df_buildings).series
        self.df_buildings["cix"] = mm.CourtyardIndex(self.df_buildings, "cas").series
        self.df_buildings["cix_array"] = mm.CourtyardIndex(
            self.df_buildings, cas, self.df_buildings.geometry.area
        ).series
        check = self.df_buildings.cas[80] / self.df_buildings.geometry.area[80]
        assert self.df_buildings["cix"][80] == check
        assert self.df_buildings["cix_array"][80] == check

    def test_Rectangularity(self):
        self.df_buildings["rect"] = mm.Rectangularity(self.df_buildings).series
        self.df_buildings["rect_array"] = mm.Rectangularity(
            self.df_buildings, self.df_buildings.geometry.area
        ).series
        check = (
            self.df_buildings.geometry[0].area
            / self.df_buildings.geometry[0].minimum_rotated_rectangle.area
        )
        assert self.df_buildings["rect"][0] == check
        assert self.df_buildings["rect_array"][0] == check

    def test_ShapeIndex(self):
        la = self.df_buildings["la"] = mm.LongestAxisLength(self.df_buildings).series
        self.df_buildings["shape_index"] = mm.ShapeIndex(self.df_buildings, "la").series
        self.df_buildings["shape_index_array"] = mm.ShapeIndex(
            self.df_buildings, la, self.df_buildings.geometry.area
        ).series
        check = math.sqrt(self.df_buildings.area[0] / math.pi) / (
            0.5 * self.df_buildings.la[0]
        )
        assert self.df_buildings["shape_index"][0] == check
        assert self.df_buildings["shape_index_array"][0] == check

    def test_Corners(self):
        self.df_buildings["corners"] = mm.Corners(self.df_buildings).series
        check = 24
        assert self.df_buildings["corners"][0] == check

    def test_Squareness(self):
        self.df_buildings["squ"] = mm.Squareness(self.df_buildings).series
        check = pytest.approx(3.707, rel=1e-3)
        assert self.df_buildings["squ"][0] == check
        self.df_buildings["squ"] = mm.Squareness(self.df_buildings.exterior).series
        assert self.df_buildings["squ"].isna().all()
        df_buildings_multi = self.df_buildings.copy()
        df_buildings_multi["geometry"] = df_buildings_multi["geometry"].apply(
            lambda geom: MultiPolygon([geom])
        )
        self.df_buildings["squm"] = mm.Squareness(df_buildings_multi).series
        assert self.df_buildings["squm"][0] == check

    def test_EquivalentRectangularIndex(self):
        self.df_buildings["eri"] = mm.EquivalentRectangularIndex(
            self.df_buildings
        ).series
        self.df_buildings["eri_array"] = mm.EquivalentRectangularIndex(
            self.df_buildings,
            areas=self.df_buildings.geometry.area,
            perimeters=self.df_buildings.geometry.length,
        ).series
        check = pytest.approx(0.7879, rel=1e-3)
        assert self.df_buildings["eri"][0] == check
        assert self.df_buildings["eri_array"][0] == check

    def test_Elongation(self):
        self.df_buildings["elo"] = mm.Elongation(self.df_buildings).series
        check = pytest.approx(0.908, rel=1e-3)
        assert self.df_buildings["elo"][0] == check

    def test_CentroidCorners(self):
        self.df_buildings.loc[144] = [145, Point(0, 0).buffer(10), 0, 0]
        self.df_buildings.loc[145] = [
            145,
            Polygon([s + (0,) for s in Point(0, 0).buffer(10).exterior.coords]),
            0,
            0,
        ]
        check = pytest.approx(15.961, rel=1e-3)
        check_devs = pytest.approx(3.081, rel=1e-3)
        cc = mm.CentroidCorners(self.df_buildings)
        self.df_buildings["ccd"] = cc.mean
        self.df_buildings["ccddev"] = cc.std
        assert self.df_buildings["ccd"][0] == check
        assert self.df_buildings["ccddev"][0] == check_devs
        df_buildings_multi = self.df_buildings.copy()
        df_buildings_multi["geometry"] = df_buildings_multi["geometry"].apply(
            lambda geom: MultiPolygon([geom])
        )
        cc = mm.CentroidCorners(df_buildings_multi)
        df_buildings_multi["ccd"] = cc.mean
        df_buildings_multi["ccddev"] = cc.std
        assert df_buildings_multi["ccd"][0] == check
        assert df_buildings_multi["ccddev"][0] == check_devs

    def test_Linearity(self):
        self.df_streets["lin"] = mm.Linearity(self.df_streets).series
        euclidean = Point(self.df_streets.geometry[0].coords[0]).distance(
            Point(self.df_streets.geometry[0].coords[-1])
        )
        check = euclidean / self.df_streets.geometry[0].length
        assert self.df_streets["lin"][0] == pytest.approx(check, rel=1e-6)

        self.df_streets.loc[len(self.df_streets)] = MultiLineString(
            [[(0, 0), (-1, 1)], [(10, 10), (11, 11)]]
        )

    def test_CompactnessWeightedAxis(self):
        self.df_buildings["cwa"] = mm.CompactnessWeightedAxis(self.df_buildings).series
        self.df_buildings["cwa_array"] = mm.CompactnessWeightedAxis(
            self.df_buildings,
            areas=self.df_buildings.geometry.area,
            perimeters=self.df_buildings.geometry.length,
            longest_axis=mm.LongestAxisLength(self.df_buildings).series,
        ).series
        check = pytest.approx(26.327, rel=1e-3)
        assert self.df_buildings["cwa"][0] == check
        assert self.df_buildings["cwa_array"][0] == check

    def test__circle_area(self):
        poly = Polygon([(0, 1, 0), (1, 1, 0), (2, 4, 0)])
        check = _circle_area(poly.exterior.coords)
        assert check == pytest.approx(10.210, rel=1e-3)