File: test_utils.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (294 lines) | stat: -rw-r--r-- 11,127 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import warnings

import geopandas as gpd
import networkx
import numpy as np
import pytest
from geopandas.testing import assert_geodataframe_equal
from shapely.geometry import LineString, Point

import momepy as mm


class TestUtils:
    def setup_method(self):
        test_file_path = mm.datasets.get_path("bubenec")
        self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
        self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
        self.df_streets = gpd.read_file(test_file_path, layer="streets")
        self.df_buildings["height"] = np.linspace(10.0, 30.0, 144)
        self.df_points = gpd.GeoDataFrame(
            data=None, geometry=[Point(0, 0), Point(1, 1)]
        )
        self.df_points_and_linestring = gpd.GeoDataFrame(
            data=None,
            geometry=[Point(0, 0), Point(1, 1), LineString([(1, 0), (0, 0), (1, 1)])],
        )

    def test_dataset_missing(self):
        with pytest.raises(ValueError, match="The dataset 'sffgkt' is not available."):
            mm.datasets.get_path("sffgkt")

    def test_gdf_to_nx_warnings(self):
        with pytest.warns(
            RuntimeWarning, match="The given network does not contain any LineString."
        ):
            mm.gdf_to_nx(self.df_points)

        with pytest.warns(
            RuntimeWarning,
            match="The given network consists of multiple geometry types.",
        ):
            mm.gdf_to_nx(self.df_points_and_linestring)

    def test_gdf_to_nx(self):
        nx = mm.gdf_to_nx(self.df_streets)
        assert nx.number_of_nodes() == 29
        assert nx.number_of_edges() == 35
        assert nx.nodes[(1603585.6402153103, 6464428.773867372)] == {
            "x": 1603585.6402153103,
            "y": 6464428.773867372,
        }

    def test_gdf_to_nx_dual(self):
        dual = mm.gdf_to_nx(self.df_streets, approach="dual")
        assert dual.number_of_nodes() == 35
        assert dual.number_of_edges() == 74
        self.df_streets["ix"] = np.arange(0, len(self.df_streets) * 2, 2)
        self.df_streets.set_index("ix", inplace=True)
        dual2 = mm.gdf_to_nx(self.df_streets, approach="dual")
        assert dual2.number_of_nodes() == 35
        assert dual2.number_of_edges() == 74
        with pytest.raises(
            ValueError, match="Approach 'nonexistent' is not supported."
        ):
            mm.gdf_to_nx(self.df_streets, approach="nonexistent")

        nx = mm.gdf_to_nx(self.df_streets, multigraph=False)
        assert isinstance(nx, networkx.Graph)
        assert nx.number_of_nodes() == 29
        assert nx.number_of_edges() == 35

    def test_gdf_to_nx_directed(self):
        nx = mm.gdf_to_nx(self.df_streets, multigraph=False, directed=True)
        assert isinstance(nx, networkx.DiGraph)
        assert nx.number_of_nodes() == 29
        assert nx.number_of_edges() == 35

        nx = mm.gdf_to_nx(self.df_streets, directed=True)
        assert isinstance(nx, networkx.MultiDiGraph)
        assert nx.number_of_nodes() == 29
        assert nx.number_of_edges() == 35

        self.df_streets["oneway"] = True
        self.df_streets.loc[0, "oneway"] = False  # first road section is bidirectional
        nx = mm.gdf_to_nx(self.df_streets, directed=True, oneway_column="oneway")
        assert nx.number_of_edges() == 36

        with pytest.raises(ValueError, match="Bidirectional lines"):
            mm.gdf_to_nx(self.df_streets, directed=False, oneway_column="oneway")

    def test_gdf_to_nx_angles(self):
        dual = mm.gdf_to_nx(self.df_streets, approach="dual", angles=False)
        assert (
            dual.edges[
                (1603499.42326969, 6464328.7520580515),
                (1603510.1061735682, 6464204.555117119),
                0,
            ]
            == {}
        )

        dual = mm.gdf_to_nx(self.df_streets, approach="dual", angle="ang")
        assert dual.edges[
            (1603499.42326969, 6464328.7520580515),
            (1603510.1061735682, 6464204.555117119),
            0,
        ] == {"ang": 117.18288698243317}

        dual = mm.gdf_to_nx(
            self.df_streets, approach="dual", angles=False, multigraph=False
        )
        assert isinstance(dual, networkx.Graph)
        assert (
            dual.edges[
                (1603499.42326969, 6464328.7520580515),
                (1603510.1061735682, 6464204.555117119),
            ]
            == {}
        )

        dual = mm.gdf_to_nx(self.df_streets, approach="dual", multigraph=False)
        assert isinstance(dual, networkx.Graph)
        assert dual.edges[
            (1603499.42326969, 6464328.7520580515),
            (1603510.1061735682, 6464204.555117119),
        ] == {"angle": 117.18288698243317}

        with pytest.raises(ValueError, match="Directed graphs are not supported"):
            mm.gdf_to_nx(self.df_streets, approach="dual", directed=True)

    def test_gdf_to_nx_labels(self):
        nx = mm.gdf_to_nx(self.df_streets, integer_labels=True)
        assert nx.number_of_nodes() == 29
        assert nx.number_of_edges() == 35
        assert nx.nodes[0] == {
            "x": 1603585.6402153103,
            "y": 6464428.773867372,
        }

    def test_nx_to_gdf(self):
        nx = mm.gdf_to_nx(self.df_streets)
        nodes, edges, W = mm.nx_to_gdf(nx, spatial_weights=True)
        assert len(nodes) == 29
        assert len(edges) == 35
        assert W.n == 29
        nodes, edges = mm.nx_to_gdf(nx)
        assert len(nodes) == 29
        assert len(edges) == 35
        edges = mm.nx_to_gdf(nx, points=False)
        assert len(edges) == 35
        nodes, W = mm.nx_to_gdf(nx, lines=False, spatial_weights=True)
        assert len(nodes) == 29
        assert W.n == 29
        nodes = mm.nx_to_gdf(nx, lines=False, spatial_weights=False)
        assert len(nodes) == 29
        dual = mm.gdf_to_nx(self.df_streets, approach="dual")
        edges = mm.nx_to_gdf(dual)
        assert len(edges) == 35
        dual.graph["approach"] = "nonexistent"
        with pytest.raises(
            ValueError, match="Approach 'nonexistent' is not supported."
        ):
            mm.nx_to_gdf(dual)

        # check graph without attributes
        G = networkx.MultiGraph()
        key = 0
        for _index, row in self.df_streets.iterrows():
            first = row.geometry.coords[0]
            last = row.geometry.coords[-1]

            data = [row[f] for f in list(self.df_streets.columns)]
            attributes = dict(zip(list(self.df_streets.columns), data, strict=False))
            G.add_edge(first, last, key=key, **attributes)
            key += 1  # noqa: SIM113

        with pytest.warns(UserWarning, match="Approach is not set"):
            nodes, edges = mm.nx_to_gdf(G)
        assert len(nodes) == 29
        assert len(edges) == 35

        # LineString Z
        line1 = LineString([(0, 0, 0), (1, 1, 1)])
        line2 = LineString([(0, 0, 0), (-1, -1, -1)])
        gdf = gpd.GeoDataFrame(geometry=[line1, line2])
        G = mm.gdf_to_nx(gdf)
        pts, lines = mm.nx_to_gdf(G)
        assert pts.iloc[0].geometry.wkt == "POINT Z (0 0 0)"
        assert lines.iloc[0].geometry.wkt == "LINESTRING Z (0 0 0, 1 1 1)"

    @pytest.mark.xfail(reason="nominatim connection error")
    def test_nx_to_gdf_osmnx(self):
        osmnx = pytest.importorskip("osmnx")
        # osmnx compatibility
        G = osmnx.graph_from_place("Preborov, Czechia", network_type="drive")
        with pytest.warns(UserWarning, match="Approach is not set"):
            pts, lines = mm.nx_to_gdf(G)
        assert len(pts) == 7
        assert len(lines) == 16

    @pytest.mark.parametrize("approach", ["primal", "dual"])
    def test_nx_roundtrip(self, approach):
        nx = mm.gdf_to_nx(self.df_streets, preserve_index=True, approach=approach)
        gdf = mm.nx_to_gdf(nx, points=False)
        assert_geodataframe_equal(gdf.drop(columns="mm_len"), self.df_streets)

    @pytest.mark.parametrize("approach", ["primal", "dual"])
    def test_nx_roundtrip_named(self, approach):
        df = self.df_streets
        df.index.name = "foo"
        nx = mm.gdf_to_nx(df, preserve_index=True, approach=approach)
        gdf = mm.nx_to_gdf(nx, points=False)
        assert_geodataframe_equal(gdf.drop(columns="mm_len"), df)
        assert gdf.index.name == "foo"

    @pytest.mark.parametrize("approach", ["primal", "dual"])
    def test_nx_roundtrip_custom(self, approach):
        df = self.df_streets
        df.index = (df.index * 10).astype(str)
        df.index.name = "foo"
        nx = mm.gdf_to_nx(df, preserve_index=True, approach=approach)
        gdf = mm.nx_to_gdf(nx, points=False)
        assert_geodataframe_equal(gdf.drop(columns="mm_len"), df)
        assert gdf.index.name == "foo"

    def test_limit_range(self):
        assert list(mm.limit_range(np.arange(10), rng=(25, 75))) == [2, 3, 4, 5, 6, 7]
        assert list(mm.limit_range(np.arange(10), rng=(10, 90))) == [
            1,
            2,
            3,
            4,
            5,
            6,
            7,
            8,
        ]
        assert list(mm.limit_range(np.array([0, 1]), rng=(25, 75))) == [0, 1]
        assert list(
            mm.limit_range(np.array([0, 1, 2, 3, 4, np.nan]), rng=(25, 75))
        ) == [1, 2, 3]
        np.testing.assert_array_equal(
            mm.limit_range(np.array([np.nan, np.nan, np.nan]), rng=(25, 75)),
            np.array([np.nan, np.nan, np.nan]),
        )

    def test_deprecated_decorators(self):
        os.environ.pop("ALLOW_LEGACY_MOMEPY", None)
        with pytest.warns(
            FutureWarning,
            match=(
                "Class based API like `momepy.LongestAxisLength` is deprecated. "
                "Replace it with `momepy.longest_axis_length`"
            ),
        ):
            mm.LongestAxisLength(self.df_buildings)
        os.environ["ALLOW_LEGACY_MOMEPY"] = "True"

        with warnings.catch_warnings():
            warnings.simplefilter("error")
            mm.LongestAxisLength(self.df_buildings)

        os.environ["ALLOW_LEGACY_MOMEPY"] = "False"
        with pytest.warns(
            FutureWarning,
            match=(
                "Class based API like `momepy.LongestAxisLength` is deprecated. "
                "Replace it with `momepy.longest_axis_length`"
            ),
        ):
            mm.LongestAxisLength(self.df_buildings)
        os.environ["ALLOW_LEGACY_MOMEPY"] = "True"

    def test_removed_decorators(self):
        os.environ.pop("ALLOW_LEGACY_MOMEPY", None)
        with pytest.warns(
            FutureWarning,
            match=("`momepy.Area` is deprecated"),
        ):
            mm.Area(self.df_buildings)
        os.environ["ALLOW_LEGACY_MOMEPY"] = "True"

        with warnings.catch_warnings():
            warnings.simplefilter("error")
            mm.Area(self.df_buildings)

        os.environ["ALLOW_LEGACY_MOMEPY"] = "False"
        with pytest.warns(
            FutureWarning,
            match=("`momepy.Area` is deprecated"),
        ):
            mm.Area(self.df_buildings)
        os.environ["ALLOW_LEGACY_MOMEPY"] = "True"