1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
#!/usr/bin/env python
import math
import os
import warnings
import geopandas as gpd
import libpysal
import networkx as nx
import numpy as np
import pandas as pd
from numpy.lib import NumpyVersion
from shapely.geometry import Point
__all__ = [
"unique_id",
"gdf_to_nx",
"nx_to_gdf",
"limit_range",
]
def deprecated(new_way):
"""
Decorator to mark classes as deprecated and point towards functional API.
"""
def decorator(func1):
import functools
@functools.wraps(func1)
def new_func1(*args, **kwargs):
if os.getenv("ALLOW_LEGACY_MOMEPY", "False").lower() not in (
"true",
"1",
"yes",
):
warnings.warn(
f"Class based API like `momepy.{func1.__name__}` is deprecated. "
f"Replace it with `momepy.{new_way}` to use functional API instead "
"or pin momepy version <1.0. Class-based API will be removed in "
"1.0. "
# "See details at https://docs.momepy.org/en/stable/migration.html",
"",
FutureWarning,
stacklevel=2,
)
return func1(*args, **kwargs)
return new_func1
return decorator
def removed(new_way):
"""
Decorator to mark classes as deprecated and removed from momepy.
"""
def decorator(func1):
import functools
@functools.wraps(func1)
def new_func1(*args, **kwargs):
if os.getenv("ALLOW_LEGACY_MOMEPY", "False").lower() not in (
"true",
"1",
"yes",
):
warnings.warn(
f"`momepy.{func1.__name__}` is deprecated. Replace it with "
f"{new_way} "
"or pin momepy version <1.0. This class will be removed in 1.0. "
# "See details at https://docs.momepy.org/en/stable/migration.html"
"",
FutureWarning,
stacklevel=2,
)
return func1(*args, **kwargs)
return new_func1
return decorator
def unique_id(objects):
"""
Add an attribute with a unique ID to each row of a GeoDataFrame.
Parameters
----------
objects : GeoDataFrame
A GeoDataFrame containing objects to analyse.
Returns
-------
series : Series
A Series containing resulting values.
"""
series = range(len(objects))
return series
def _angle(a, b, c):
"""
Measure the angle between a-b, b-c (in degrees). Helper for ``gdf_to_nx``.
Adapted from cityseer's implementation.
"""
a1 = math.degrees(math.atan2(b[1] - a[1], b[0] - a[0]))
a2 = math.degrees(math.atan2(c[1] - b[1], c[0] - b[0]))
return abs((a2 - a1 + 180) % 360 - 180)
def _generate_primal(
graph, gdf_network, fields, multigraph, oneway_column=None, preserve_index=False
):
"""Generate a primal graph. Helper for ``gdf_to_nx``."""
graph.graph["approach"] = "primal"
if gdf_network.index.name is not None:
graph.graph["index_name"] = gdf_network.index.name
msg = (
" This can lead to unexpected behaviour. "
"The intended usage of the conversion function "
"is with networks made of LineStrings only."
)
if "LineString" not in gdf_network.geom_type.unique():
warnings.warn(
message="The given network does not contain any LineString." + msg,
category=RuntimeWarning,
stacklevel=3,
)
if len(gdf_network.geom_type.unique()) > 1:
warnings.warn(
message="The given network consists of multiple geometry types." + msg,
category=RuntimeWarning,
stacklevel=3,
)
custom_index = not gdf_network.index.equals(pd.RangeIndex(len(gdf_network)))
for i, row in enumerate(gdf_network.itertuples()):
first = row.geometry.coords[0]
last = row.geometry.coords[-1]
data = list(row)[1:]
attributes = dict(zip(fields, data, strict=True))
if preserve_index:
attributes["index_position"] = i
if custom_index:
attributes["index"] = row.Index
if multigraph:
graph.add_edge(first, last, **attributes)
if oneway_column:
oneway = bool(getattr(row, oneway_column))
if not oneway:
graph.add_edge(last, first, **attributes)
else:
graph.add_edge(first, last, **attributes)
node_attrs = {node: {"x": node[0], "y": node[1]} for node in graph.nodes}
nx.set_node_attributes(graph, node_attrs)
def _generate_dual(
graph, gdf_network, fields, angles, multigraph, angle, preserve_index
):
"""Generate a dual graph. Helper for ``gdf_to_nx``."""
graph.graph["approach"] = "dual"
if gdf_network.index.name is not None:
graph.graph["index_name"] = gdf_network.index.name
custom_index = not gdf_network.index.equals(pd.RangeIndex(len(gdf_network)))
key = 0
sw = libpysal.weights.Queen.from_dataframe(
gdf_network, silence_warnings=True, use_index=False
)
cent = gdf_network.geometry.centroid
gdf_network["temp_x_coords"] = cent.x
gdf_network["temp_y_coords"] = cent.y
for i, row in enumerate(gdf_network.itertuples()):
centroid = (row.temp_x_coords, row.temp_y_coords)
data = list(row)[1:-2]
attributes = dict(zip(fields, data, strict=True))
if preserve_index:
attributes["index_position"] = i
if custom_index:
attributes["index"] = row.Index
graph.add_node(centroid, **attributes)
if sw.cardinalities[i] > 0:
for n in sw.neighbors[i]:
start = centroid
end = (
gdf_network["temp_x_coords"].iloc[n],
gdf_network["temp_y_coords"].iloc[n],
)
p0 = row.geometry.coords[0]
p1 = row.geometry.coords[-1]
geom = gdf_network.geometry.iloc[n]
p2 = geom.coords[0]
p3 = geom.coords[-1]
points = [p0, p1, p2, p3]
shared = [x for x in points if points.count(x) > 1]
if shared: # fix for non-planar graph
remaining = [e for e in points if e not in [shared[0]]]
if len(remaining) == 2:
if angles:
angle_value = _angle(remaining[0], shared[0], remaining[1])
if multigraph:
graph.add_edge(
start, end, key=0, **{angle: angle_value}
)
key += 1
else:
graph.add_edge(start, end, **{angle: angle_value})
else:
if multigraph:
graph.add_edge(start, end, key=0)
key += 1
else:
graph.add_edge(start, end)
def gdf_to_nx(
gdf_network,
approach="primal",
length="mm_len",
multigraph=True,
directed=False,
angles=True,
angle="angle",
oneway_column=None,
integer_labels=False,
preserve_index=False,
):
"""
Convert a LineString GeoDataFrame to a ``networkx.MultiGraph`` or other
Graph as per specification. Columns are preserved as edge or node
attributes (depending on the ``approach``). Index is not preserved.
See the User Guide page :doc:`../../user_guide/graph/convert` for details.
Parameters
----------
gdf_network : GeoDataFrame
A GeoDataFrame containing objects to convert.
approach : str, default 'primal'
Allowed options are ``'primal'`` or ``'dual'``. Primal graphs represent
endpoints as nodes and LineStrings as edges. Dual graphs represent
LineStrings as nodes and their topological relation as edges. In such a
case, it can encode an angle between LineStrings as an edge attribute.
length : str, default 'mm_len'
The attribute name of segment length (geographical)
which will be saved to the graph.
multigraph : bool, default True
Create a ``MultiGraph`` of ``Graph`` (potentially directed).
``MutliGraph`` allows multiple edges between any pair of nodes,
which is a common case in street networks.
directed : bool, default False
Create a directed graph (``DiGraph`` or ``MultiDiGraph``).
Directionality follows the order of LineString coordinates.
angles : bool, default True
Capture the angles between LineStrings as an attribute of a dual graph.
Ignored if ``approach='primal'``.
angle : str, default 'angle'
The attribute name of the angle between LineStrings which will
be saved to the graph. Ignored if ``approach='primal'``.
oneway_column : str, default None
Create an additional edge for each LineString which allows bidirectional
path traversal by specifying the boolean column in the GeoDataFrame. Note,
that the reverse conversion ``nx_to_gdf(gdf_to_nx(gdf, directed=True,
oneway_column="oneway"))`` will contain additional duplicated geometries.
integer_labels : bool, default False
Convert node labels to integers. By default, node labels are tuples with (x, y)
coordinates. Set to True to encode them as integers. Note that the x, and y
coordinates are always preserved as node attributes.
preserve_index : bool, default False
Preserve information about the index of ``gdf_network``. If
``gdf_network.index`` is the default ``RangeIndex``, ``"index_position"``
attribute is added to each edge. If it is a custom index, ``"index_position"``
and ``"index"`` attributes are added. These attributes are then used by
:func:`nx_to_gdf` to faithfully roundtrip the data in the same order.
Returns
-------
net : networkx.Graph, networkx.MultiGraph, networkx.DiGraph, networkx.MultiDiGraph
Graph as per specification.
See also
--------
nx_to_gdf
Examples
--------
>>> import geopandas as gpd
>>> df = gpd.read_file(momepy.datasets.get_path('bubenec'), layer='streets')
>>> df.head(5)
geometry
0 LINESTRING (1603585.640 6464428.774, 1603413.2...
1 LINESTRING (1603268.502 6464060.781, 1603296.8...
2 LINESTRING (1603607.303 6464181.853, 1603592.8...
3 LINESTRING (1603678.970 6464477.215, 1603675.6...
4 LINESTRING (1603537.194 6464558.112, 1603557.6...
Primal graph:
>>> G = momepy.gdf_to_nx(df)
>>> G
<networkx.classes.multigraph.MultiGraph object at 0x7f8cf90fad50>
>>> G_directed = momepy.gdf_to_nx(df, directed=True)
>>> G_directed
<networkx.classes.multidigraph.MultiDiGraph object at 0x7f8cf90f56d0>
>>> G_digraph = momepy.gdf_to_nx(df, multigraph=False, directed=True)
>>> G_digraph
<networkx.classes.digraph.DiGraph object at 0x7f8cf9150c10>
>>> G_graph = momepy.gdf_to_nx(df, multigraph=False, directed=False)
>>> G_graph
<networkx.classes.graph.Graph object at 0x7f8cf90facd0>
Dual graph:
>>> G_dual = momepy.gdf_to_nx(df, approach="dual")
>>> G_dual
<networkx.classes.multigraph.MultiGraph object at 0x7f8cf9150fd0>
"""
gdf_network = gdf_network.copy()
if "key" in gdf_network.columns:
gdf_network.rename(columns={"key": "__key"}, inplace=True)
if multigraph and directed:
net = nx.MultiDiGraph()
elif multigraph and not directed:
net = nx.MultiGraph()
elif not multigraph and directed:
net = nx.DiGraph()
else:
net = nx.Graph()
net.graph["crs"] = gdf_network.crs
gdf_network[length] = gdf_network.geometry.length
fields = list(gdf_network.columns)
if approach == "primal":
if oneway_column and not directed:
raise ValueError(
"Bidirectional lines are only supported for directed graphs."
)
_generate_primal(
net,
gdf_network,
fields,
multigraph,
oneway_column,
preserve_index=preserve_index,
)
elif approach == "dual":
if directed:
raise ValueError("Directed graphs are not supported in dual approach.")
_generate_dual(
net,
gdf_network,
fields,
angles=angles,
multigraph=multigraph,
angle=angle,
preserve_index=preserve_index,
)
else:
raise ValueError(
f"Approach '{approach}' is not supported. Use 'primal' or 'dual'."
)
if integer_labels:
net = nx.convert_node_labels_to_integers(net)
return net
def _points_to_gdf(net):
"""Generate a point gdf from nodes. Helper for ``nx_to_gdf``."""
node_xy, node_data = zip(*net.nodes(data=True), strict=True)
if isinstance(node_xy[0], int) and "x" in node_data[0]:
geometry = [Point(data["x"], data["y"]) for data in node_data] # osmnx graph
else:
geometry = [Point(*p) for p in node_xy]
gdf_nodes = gpd.GeoDataFrame(list(node_data), geometry=geometry)
if "crs" in net.graph:
gdf_nodes.crs = net.graph["crs"]
return gdf_nodes
def _lines_to_gdf(net, points, node_id):
"""Generate a linestring gdf from edges. Helper for ``nx_to_gdf``."""
starts, ends, edge_data = zip(*net.edges(data=True), strict=True)
gdf_edges = gpd.GeoDataFrame(list(edge_data))
if points is True:
gdf_edges["node_start"] = [net.nodes[s][node_id] for s in starts]
gdf_edges["node_end"] = [net.nodes[e][node_id] for e in ends]
if "crs" in net.graph:
gdf_edges.crs = net.graph["crs"]
if "index_position" in gdf_edges.columns:
gdf_edges = gdf_edges.sort_values("index_position").drop(
columns="index_position"
)
if "index" in gdf_edges.columns:
gdf_edges = gdf_edges.set_index("index")
else:
gdf_edges = gdf_edges.reset_index(drop=True)
gdf_edges.index.name = net.graph.get("index_name", None)
return gdf_edges
def _primal_to_gdf(net, points, lines, spatial_weights, node_id):
"""Generate gdf(s) from a primal network. Helper for ``nx_to_gdf``."""
if points is True:
gdf_nodes = _points_to_gdf(net)
if spatial_weights is True:
weights = libpysal.weights.W.from_networkx(net)
weights.transform = "b"
if lines is True:
gdf_edges = _lines_to_gdf(net, points, node_id)
if points is True and lines is True:
if spatial_weights is True:
return gdf_nodes, gdf_edges, weights
return gdf_nodes, gdf_edges
if points is True and lines is False:
if spatial_weights is True:
return gdf_nodes, weights
return gdf_nodes
return gdf_edges
def _dual_to_gdf(net):
"""Generate a linestring gdf from a dual network. Helper for ``nx_to_gdf``."""
starts, edge_data = zip(*net.nodes(data=True), strict=True)
gdf_edges = gpd.GeoDataFrame(list(edge_data))
if "index_position" in gdf_edges.columns:
gdf_edges = gdf_edges.sort_values("index_position").drop(
columns="index_position"
)
if "index" in gdf_edges.columns:
gdf_edges = gdf_edges.set_index("index")
else:
gdf_edges = gdf_edges.reset_index(drop=True)
gdf_edges.index.name = net.graph.get("index_name", None)
gdf_edges.crs = net.graph["crs"]
return gdf_edges
def nx_to_gdf(
net,
points=True,
lines=True,
spatial_weights=False,
nodeID="nodeID", # noqa: N803
):
"""
Convert a ``networkx.Graph`` to a LineString GeoDataFrame and Point GeoDataFrame.
Automatically detects an ``approach`` of the graph and assigns
edges and nodes to relevant geometry type.
See the User Guide page :doc:`../../user_guide/graph/convert` for details.
Parameters
----------
net : networkx.Graph
A ``networkx.Graph`` object.
points : bool (default is ``True``)
Export point-based gdf representing intersections.
lines : bool (default is ``True``)
Export line-based gdf representing streets.
spatial_weights : bool (default is ``False``)
Set to ``True`` to export a libpysal spatial weights
for nodes (only for primal graphs).
nodeID : str
The name of the node ID column to be generated.
Returns
-------
GeoDataFrame
The Selected gdf or tuple of both gdfs or tuple of gdfs and weights.
See also
--------
gdf_to_nx
Examples
--------
>>> import geopandas as gpd
>>> df = gpd.read_file(momepy.datasets.get_path('bubenec'), layer='streets')
>>> df.head(2)
geometry
0 LINESTRING (1603585.640 6464428.774, 1603413.2...
1 LINESTRING (1603268.502 6464060.781, 1603296.8...
>>> G = momepy.gdf_to_nx(df)
Converting the primal Graph to points as intersections and lines as street segments:
>>> points, lines = momepy.nx_to_gdf(graph)
>>> points.head(2)
nodeID geometry
0 1 POINT (1603585.640 6464428.774)
1 2 POINT (1603413.206 6464228.730)
>>> lines.head(2)
geometry mm_len node_start node_end
0 LINESTRING (1603585.640... 264.103950 1 2
1 LINESTRING (1603561.740... 70.020202 1 9
Storing the relationship between points/nodes as a libpysal W object:
>>> points, lines, W = momepy.nx_to_gdf(graph, spatial_weights=True)
>>> W
<libpysal.weights.weights.W object at 0x7f8d01837210>
Converting the dual Graph to lines. The dual Graph does not export edges to GDF:
>>> G = momepy.gdf_to_nx(df, approach="dual")
>>> lines = momepy.nx_to_gdf(graph)
>>> lines.head(2)
geometry mm_len
0 LINESTRING (1603585.640 6464428.774, 1603413.2... 264.103950
1 LINESTRING (1603607.303 6464181.853, 1603592.8... 199.746503
"""
# generate nodes and edges geodataframes from graph
primal = None
if "approach" in net.graph:
if net.graph["approach"] == "primal":
primal = True
elif net.graph["approach"] == "dual":
return _dual_to_gdf(net)
else:
raise ValueError(
f"Approach '{net.graph['approach']}' is not supported. "
"Use 'primal' or 'dual'."
)
if not primal:
warnings.warn(
message="Approach is not set. Defaulting to 'primal'.",
category=UserWarning,
stacklevel=2,
)
for nid, n in enumerate(net):
net.nodes[n][nodeID] = nid
return _primal_to_gdf(
net,
points=points,
lines=lines,
spatial_weights=spatial_weights,
node_id=nodeID,
)
def limit_range(vals, rng):
"""
Extract values within selected range.
Parameters
----------
vals : numpy.array
Values over which to extract a range.
rng : tuple, list, optional (default None)
A two-element sequence containing floats between 0 and 100 (inclusive)
that are the percentiles over which to compute the range.
The order of the elements is not important.
Returns
-------
vals : numpy.array
The limited array.
"""
nan_tracker = np.isnan(vals)
if (len(vals) > 2) and (not nan_tracker.all()):
if NumpyVersion(np.__version__) >= "1.22.0":
method = {"method": "nearest"}
else:
method = {"interpolation": "nearest"}
rng = sorted(rng)
if nan_tracker.any():
lower, higher = np.nanpercentile(vals, rng, **method)
else:
lower, higher = np.percentile(vals, rng, **method)
vals = vals[(lower <= vals) & (vals <= higher)]
return vals
def _azimuth(point1, point2):
"""Return the azimuth between 2 shapely points (interval 0 - 180)."""
angle = np.arctan2(point2[0] - point1[0], point2[1] - point1[1])
return np.degrees(angle) % 180
|