File: models.py

package info (click to toggle)
python-moto 5.1.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,520 kB
  • sloc: python: 636,725; javascript: 181; makefile: 39; sh: 3
file content (536 lines) | stat: -rw-r--r-- 18,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import time
from datetime import datetime
from typing import Any, Optional

from moto.athena.exceptions import InvalidArgumentException, QueryStillRunning
from moto.core.base_backend import BackendDict, BaseBackend
from moto.core.common_models import BaseModel
from moto.moto_api._internal import mock_random
from moto.moto_api._internal.managed_state_model import ManagedState
from moto.s3.models import s3_backends
from moto.s3.utils import bucket_and_name_from_url
from moto.utilities.paginator import paginate
from moto.utilities.tagging_service import TaggingService
from moto.utilities.utils import get_partition


class TaggableResourceMixin:
    # This mixing was copied from Redshift when initially implementing
    # Athena. TBD if it's worth the overhead.

    def __init__(
        self,
        account_id: str,
        region_name: str,
        resource_name: str,
        tags: list[dict[str, str]],
    ):
        self.region = region_name
        self.resource_name = resource_name
        self.tags = tags or []
        self.arn = f"arn:{get_partition(region_name)}:athena:{region_name}:{account_id}:{resource_name}"

    def create_tags(self, tags: list[dict[str, str]]) -> list[dict[str, str]]:
        new_keys = [tag_set["Key"] for tag_set in tags]
        self.tags = [tag_set for tag_set in self.tags if tag_set["Key"] not in new_keys]
        self.tags.extend(tags)
        return self.tags

    def delete_tags(self, tag_keys: list[str]) -> list[dict[str, str]]:
        self.tags = [tag_set for tag_set in self.tags if tag_set["Key"] not in tag_keys]
        return self.tags


class WorkGroup(TaggableResourceMixin, BaseModel):
    resource_type = "workgroup"
    state = "ENABLED"

    def __init__(
        self,
        athena_backend: "AthenaBackend",
        name: str,
        configuration: dict[str, Any],
        description: str,
        tags: list[dict[str, str]],
    ):
        self.region_name = athena_backend.region_name
        super().__init__(
            athena_backend.account_id,
            self.region_name,
            f"workgroup/{name}",
            tags,
        )
        self.athena_backend = athena_backend
        self.name = name
        self.description = description
        self.configuration = configuration

        if "EnableMinimumEncryptionConfiguration" not in self.configuration:
            self.configuration["EnableMinimumEncryptionConfiguration"] = False
        if "EnforceWorkGroupConfiguration" not in self.configuration:
            self.configuration["EnforceWorkGroupConfiguration"] = True
        if "EngineVersion" not in self.configuration:
            self.configuration["EngineVersion"] = {
                "EffectiveEngineVersion": "Athena engine version 3",
                "SelectedEngineVersion": "AUTO",
            }
        if "PublishCloudWatchMetricsEnabled" not in self.configuration:
            self.configuration["PublishCloudWatchMetricsEnabled"] = False
        if "RequesterPaysEnabled" not in self.configuration:
            self.configuration["RequesterPaysEnabled"] = False


class DataCatalog(TaggableResourceMixin, BaseModel):
    def __init__(
        self,
        athena_backend: "AthenaBackend",
        name: str,
        catalog_type: str,
        description: str,
        parameters: str,
        tags: list[dict[str, str]],
    ):
        self.region_name = athena_backend.region_name
        super().__init__(
            athena_backend.account_id,
            self.region_name,
            f"datacatalog/{name}",
            tags,
        )
        self.athena_backend = athena_backend
        self.name = name
        self.type = catalog_type
        self.description = description
        self.parameters = parameters


class Execution(ManagedState):
    def __init__(
        self,
        query: str,
        context: str,
        config: dict[str, Any],
        workgroup: Optional[WorkGroup],
        execution_parameters: Optional[list[str]],
    ):
        ManagedState.__init__(
            self,
            model_name="athena::execution",
            transitions=[("QUEUED", "RUNNING"), ("RUNNING", "SUCCEEDED")],
        )
        self.id = str(mock_random.uuid4())
        self.query = query
        self.context = context
        self.config = config
        self.workgroup = workgroup
        self.execution_parameters = execution_parameters
        self.start_time = time.time()
        self.end_time = time.time()

        if self.config is not None and "OutputLocation" in self.config:
            if not self.config["OutputLocation"].endswith("/"):
                self.config["OutputLocation"] += "/"
            self.config["OutputLocation"] += f"{self.id}.csv"


class QueryResults(BaseModel):
    def __init__(self, rows: list[dict[str, Any]], column_info: list[dict[str, str]]):
        self.rows = rows
        self.column_info = column_info

    def to_dict(self) -> dict[str, Any]:
        return {
            "ResultSet": {
                "Rows": self.rows,
                "ResultSetMetadata": {"ColumnInfo": self.column_info},
            },
        }


class CapacityReservation(TaggableResourceMixin, BaseModel):
    def __init__(
        self,
        athena_backend: "AthenaBackend",
        name: str,
        target_dpus: int,
        tags: list[dict[str, str]],
    ):
        self.region_name = athena_backend.region_name
        super().__init__(
            athena_backend.account_id,
            self.region_name,
            f"capacity-reservation/{name}",
            tags,
        )
        self.athena_backend = athena_backend
        self.name = name
        self.target_dpus = target_dpus
        self.create_tags(tags)
        self.tags = tags


class NamedQuery(BaseModel):
    def __init__(
        self,
        name: str,
        description: str,
        database: str,
        query_string: str,
        workgroup: WorkGroup,
    ):
        self.id = str(mock_random.uuid4())
        self.name = name
        self.description = description
        self.database = database
        self.query_string = query_string
        self.workgroup = workgroup


class PreparedStatement(BaseModel):
    def __init__(
        self,
        statement_name: str,
        workgroup: WorkGroup,
        query_statement: str,
        description: str,
    ):
        self.statement_name = statement_name
        self.workgroup = workgroup
        self.query_statement = query_statement
        self.description = description
        self.last_modified_time = datetime.now()


class AthenaBackend(BaseBackend):
    PAGINATION_MODEL = {
        "list_named_queries": {
            "input_token": "next_token",
            "limit_key": "max_results",
            "limit_default": 50,
            "unique_attribute": "id",
        }
    }

    def __init__(self, region_name: str, account_id: str):
        super().__init__(region_name, account_id)
        self.work_groups: dict[str, WorkGroup] = {}
        self.executions: dict[str, Execution] = {}
        self.named_queries: dict[str, NamedQuery] = {}
        self.capacity_reservations: dict[str, CapacityReservation] = {}
        self.data_catalogs: dict[str, DataCatalog] = {}
        self.query_results: dict[str, QueryResults] = {}
        self.query_results_queue: list[QueryResults] = []
        self.prepared_statements: dict[str, PreparedStatement] = {}
        self.tagger = TaggingService()

        # Initialise with the primary workgroup
        self.create_work_group(
            name="primary",
            description="",
            configuration={
                "ResultConfiguration": {},
                "EnforceWorkGroupConfiguration": False,
            },
            tags=[],
        )

    def create_work_group(
        self,
        name: str,
        configuration: dict[str, Any],
        description: str,
        tags: list[dict[str, str]],
    ) -> Optional[WorkGroup]:
        if name in self.work_groups:
            return None
        work_group = WorkGroup(self, name, configuration, description, tags)
        self.work_groups[name] = work_group
        self.tagger.tag_resource(work_group.arn, tags)
        return work_group

    def list_work_groups(self) -> list[dict[str, Any]]:
        return [
            {
                "Name": wg.name,
                "State": wg.state,
                "Description": wg.description,
                "CreationTime": time.time(),
            }
            for wg in self.work_groups.values()
        ]

    def get_work_group(self, name: str) -> Optional[dict[str, Any]]:
        if name not in self.work_groups:
            return None
        wg = self.work_groups[name]
        return {
            "Name": wg.name,
            "State": wg.state,
            "Configuration": wg.configuration,
            "Description": wg.description,
            "CreationTime": time.time(),
        }

    def delete_work_group(self, name: str) -> None:
        self.work_groups.pop(name, None)

    def start_query_execution(
        self,
        query: str,
        context: str,
        config: dict[str, Any],
        workgroup: str,
        execution_parameters: Optional[list[str]],
    ) -> str:
        execution = Execution(
            query=query,
            context=context,
            config=config,
            workgroup=self.work_groups.get(workgroup),
            execution_parameters=execution_parameters,
        )
        self.executions[execution.id] = execution

        self._store_predefined_query_results(execution.id)

        return execution.id

    def _store_predefined_query_results(self, exec_id: str) -> None:
        if exec_id not in self.query_results and self.query_results_queue:
            self.query_results[exec_id] = self.query_results_queue.pop(0)

            self._store_query_result_in_s3(exec_id)

    def get_query_execution(self, exec_id: str) -> Execution:
        execution = self.executions[exec_id]
        execution.advance()
        return execution

    def list_query_executions(self, workgroup: Optional[str]) -> dict[str, Execution]:
        # Note: We do not advance the execution status here, only in `get_query_execution`
        # This method simply returns the QueryExecutionIds to the user
        # They will always have to call `get_query_execution` to get the status
        if workgroup is not None:
            return {
                exec_id: execution
                for exec_id, execution in self.executions.items()
                if execution.workgroup and execution.workgroup.name == workgroup
            }
        return self.executions

    def get_query_results(self, exec_id: str) -> QueryResults:
        """
        Queries are not executed by Moto, so this call will always return 0 rows by default.

        You can use a dedicated API to override this, by configuring a queue of expected results.

        A request to `get_query_results` will take the first result from that queue, and assign it to the provided QueryExecutionId. Subsequent requests using the same QueryExecutionId will return the same result. Other requests using a different QueryExecutionId will take the next result from the queue, or return an empty result if the queue is empty.

        Configuring this queue by making an HTTP request to `/moto-api/static/athena/query-results`. An example invocation looks like this:

        .. sourcecode:: python

            expected_results = {
                "account_id": "123456789012",  # This is the default - can be omitted
                "region": "us-east-1",  # This is the default - can be omitted
                "results": [
                    {
                        "rows": [{"Data": [{"VarCharValue": "1"}]}],
                        "column_info": [{
                            "CatalogName": "string",
                            "SchemaName": "string",
                            "TableName": "string",
                            "Name": "string",
                            "Label": "string",
                            "Type": "string",
                            "Precision": 123,
                            "Scale": 123,
                            "Nullable": "NOT_NULL",
                            "CaseSensitive": True,
                        }],
                    },
                    # other results as required
                ],
            }
            resp = requests.post(
                "http://motoapi.amazonaws.com/moto-api/static/athena/query-results",
                json=expected_results,
            )
            assert resp.status_code == 201

            client = boto3.client("athena", region_name="us-east-1")
            details = client.get_query_execution(QueryExecutionId="any_id")["QueryExecution"]

        .. note:: The exact QueryExecutionId is not relevant here, but will likely be whatever value is returned by start_query_execution

        Query results will also be stored in the S3 output location (in CSV format).

        """
        if (exctn := self.executions.get(exec_id)) and exctn.status != "SUCCEEDED":
            raise QueryStillRunning(current_status=exctn.status)

        self._store_predefined_query_results(exec_id)

        results = (
            self.query_results[exec_id]
            if exec_id in self.query_results
            else QueryResults(rows=[], column_info=[])
        )
        return results

    def _store_query_result_in_s3(self, exec_id: str) -> None:
        try:
            output_location = self.executions[exec_id].config["OutputLocation"]
            bucket, key = bucket_and_name_from_url(output_location)

            query_result = ""
            for row in self.query_results[exec_id].rows:
                query_result += ",".join(
                    [
                        f'"{r["VarCharValue"]}"' if "VarCharValue" in r else ""
                        for r in row["Data"]
                    ]
                )
                query_result += "\n"

            s3_backends[self.account_id][self.partition].put_object(
                bucket_name=bucket,  # type: ignore
                key_name=key,  # type: ignore
                value=query_result.encode("utf-8"),
            )
        except:  # noqa
            # Execution may not exist
            # OutputLocation may not exist
            pass

    def stop_query_execution(self, exec_id: str) -> None:
        execution = self.executions[exec_id]
        execution.status = "CANCELLED"

    def create_capacity_reservation(
        self,
        name: str,
        target_dpus: int,
        tags: list[dict[str, str]],
    ) -> None:
        cr = CapacityReservation(self, name, target_dpus, tags)
        self.capacity_reservations[cr.name] = cr
        self.tagger.tag_resource(cr.arn, tags)
        return None

    def get_capacity_reservation(self, name: str) -> Optional[CapacityReservation]:
        return self.capacity_reservations.get(name)

    def list_capacity_reservations(self) -> list[dict[str, Any]]:
        return [
            {"Name": cr.name, "TargetDpus": cr.target_dpus, "CreationTime": time.time()}
            for cr in self.capacity_reservations.values()
        ]

    def update_capacity_reservation(self, name: str, target_dpus: int) -> None:
        if name not in self.capacity_reservations:
            raise InvalidArgumentException("Capacity Reservation does not exist")

        self.capacity_reservations[name].target_dpus = target_dpus

    def create_named_query(
        self,
        name: str,
        description: str,
        database: str,
        query_string: str,
        workgroup: str,
    ) -> str:
        nq = NamedQuery(
            name=name,
            description=description,
            database=database,
            query_string=query_string,
            workgroup=self.work_groups[workgroup],
        )
        self.named_queries[nq.id] = nq
        return nq.id

    def get_named_query(self, query_id: str) -> Optional[NamedQuery]:
        return self.named_queries[query_id] if query_id in self.named_queries else None

    def list_data_catalogs(self) -> list[dict[str, str]]:
        return [
            {"CatalogName": dc.name, "Type": dc.type}
            for dc in self.data_catalogs.values()
        ]

    def get_data_catalog(self, name: str) -> Optional[dict[str, str]]:
        if name not in self.data_catalogs:
            return None
        dc = self.data_catalogs[name]
        return {
            "Name": dc.name,
            "Description": dc.description,
            "Type": dc.type,
            "Parameters": dc.parameters,
        }

    def create_data_catalog(
        self,
        name: str,
        catalog_type: str,
        description: str,
        parameters: str,
        tags: list[dict[str, str]],
    ) -> Optional[DataCatalog]:
        if name in self.data_catalogs:
            return None
        data_catalog = DataCatalog(
            self, name, catalog_type, description, parameters, tags
        )
        self.data_catalogs[name] = data_catalog
        self.tagger.tag_resource(data_catalog.arn, tags)
        return data_catalog

    @paginate(pagination_model=PAGINATION_MODEL)
    def list_named_queries(self, work_group: str) -> list[str]:
        named_query_ids = [
            q.id for q in self.named_queries.values() if q.workgroup.name == work_group
        ]
        return named_query_ids

    def create_prepared_statement(
        self,
        statement_name: str,
        workgroup: WorkGroup,
        query_statement: str,
        description: str,
    ) -> None:
        ps = PreparedStatement(
            statement_name=statement_name,
            workgroup=workgroup,
            query_statement=query_statement,
            description=description,
        )
        self.prepared_statements[ps.statement_name] = ps
        return None

    def get_prepared_statement(
        self, statement_name: str, work_group: WorkGroup
    ) -> Optional[PreparedStatement]:
        if statement_name in self.prepared_statements:
            ps = self.prepared_statements[statement_name]
            if ps.workgroup == work_group:
                return ps
        return None

    def get_query_runtime_statistics(
        self, query_execution_id: str
    ) -> Optional[Execution]:
        if query_execution_id in self.executions:
            return self.executions[query_execution_id]
        return None

    def list_tags_for_resource(self, resource_arn: str) -> Optional[dict[str, Any]]:
        if self.tagger.has_tags(resource_arn):
            return self.tagger.list_tags_for_resource(resource_arn)
        return None


athena_backends = BackendDict(AthenaBackend, "athena")