File: models.py

package info (click to toggle)
python-moto 5.1.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,520 kB
  • sloc: python: 636,725; javascript: 181; makefile: 39; sh: 3
file content (502 lines) | stat: -rw-r--r-- 20,922 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""BedrockBackend class with methods for supported APIs."""

import re
from datetime import datetime
from typing import Any, Optional

from moto.bedrock.exceptions import (
    ResourceInUseException,
    ResourceNotFoundException,
    TooManyTagsException,
    ValidationException,
)
from moto.core.base_backend import BackendDict, BaseBackend
from moto.core.common_models import BaseModel
from moto.utilities.paginator import paginate
from moto.utilities.tagging_service import TaggingService
from moto.utilities.utils import get_partition


class ModelCustomizationJob(BaseModel):
    def __init__(
        self,
        job_name: str,
        custom_model_name: str,
        role_arn: str,
        base_model_identifier: str,
        training_data_config: dict[str, str],
        output_data_config: dict[str, str],
        hyper_parameters: dict[str, str],
        region_name: str,
        account_id: str,
        client_request_token: Optional[str],
        customization_type: Optional[str],
        custom_model_kms_key_id: Optional[str],
        job_tags: Optional[list[dict[str, str]]],
        custom_model_tags: Optional[list[dict[str, str]]],
        validation_data_config: Optional[dict[str, Any]],
        vpc_config: Optional[dict[str, Any]],
    ):
        self.job_name = job_name
        self.custom_model_name = custom_model_name
        self.role_arn = role_arn
        self.client_request_token = client_request_token
        self.base_model_identifier = base_model_identifier
        self.customization_type = customization_type
        self.custom_model_kms_key_id = custom_model_kms_key_id
        self.job_tags = job_tags
        self.custom_model_tags = custom_model_tags
        if "s3Uri" not in training_data_config or not re.match(
            r"s3://.*", training_data_config["s3Uri"]
        ):
            raise ValidationException(
                "Validation error detected: "
                f"Value '{training_data_config}' at 'training_data_config' failed to satisfy constraint: "
                "Member must satisfy regular expression pattern: "
                "s3://.*"
            )
        self.training_data_config = training_data_config
        if validation_data_config:
            if "validators" in validation_data_config:
                for validator in validation_data_config["validators"]:
                    if not re.match(r"s3://.*", validator["s3Uri"]):
                        raise ValidationException(
                            "Validation error detected: "
                            f"Value '{validator}' at 'validation_data_config' failed to satisfy constraint: "
                            "Member must satisfy regular expression pattern: "
                            "s3://.*"
                        )
        self.validation_data_config = validation_data_config
        if "s3Uri" not in output_data_config or not re.match(
            r"s3://.*", output_data_config["s3Uri"]
        ):
            raise ValidationException(
                "Validation error detected: "
                f"Value '{output_data_config}' at 'output_data_config' failed to satisfy constraint: "
                "Member must satisfy regular expression pattern: "
                "s3://.*"
            )
        self.output_data_config = output_data_config
        self.hyper_parameters = hyper_parameters
        self.vpc_config = vpc_config
        self.region_name = region_name
        self.account_id = account_id
        self.job_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}:{self.account_id}:model-customization-job/{self.job_name}"
        self.output_model_name = f"{self.custom_model_name}-{self.job_name}"
        self.output_model_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}:{self.account_id}:custom-model/{self.output_model_name}"
        self.status = "InProgress"
        self.failure_message = "Failure Message"
        self.creation_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        self.last_modified_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        self.end_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        self.base_model_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}::foundation-model/{self.base_model_identifier}"
        self.output_model_kms_key_arn = f"arn:{get_partition(self.region_name)}:kms:{self.region_name}:{self.account_id}:key/{self.output_model_name}-kms-key"
        self.training_metrics = {"trainingLoss": 0.0}  # hard coded
        self.validation_metrics = [{"validationLoss": 0.0}]  # hard coded

    def to_dict(self) -> dict[str, Any]:
        dct = {
            "baseModelArn": self.base_model_arn,
            "clientRequestToken": self.client_request_token,
            "creationTime": self.creation_time,
            "customizationType": self.customization_type,
            "endTime": self.end_time,
            "failureMessage": self.failure_message,
            "hyperParameters": self.hyper_parameters,
            "jobArn": self.job_arn,
            "jobName": self.job_name,
            "lastModifiedTime": self.last_modified_time,
            "outputDataConfig": self.output_data_config,
            "outputModelArn": self.output_model_arn,
            "outputModelKmsKeyArn": self.output_model_kms_key_arn,
            "outputModelName": self.output_model_name,
            "roleArn": self.role_arn,
            "status": self.status,
            "trainingDataConfig": self.training_data_config,
            "trainingMetrics": self.training_metrics,
            "validationDataConfig": self.validation_data_config,
            "validationMetrics": self.validation_metrics,
            "vpcConfig": self.vpc_config,
        }
        return {k: v for k, v in dct.items() if v}


class CustomModel(BaseModel):
    def __init__(
        self,
        model_name: str,
        job_name: str,
        job_arn: str,
        base_model_arn: str,
        hyper_parameters: dict[str, str],
        output_data_config: dict[str, str],
        training_data_config: dict[str, str],
        training_metrics: dict[str, float],
        base_model_name: str,
        region_name: str,
        account_id: str,
        customization_type: Optional[str],
        model_kms_key_arn: Optional[str],
        validation_data_config: Optional[dict[str, Any]],
        validation_metrics: Optional[list[dict[str, float]]],
    ):
        self.model_name = model_name
        self.job_name = job_name
        self.job_arn = job_arn
        self.base_model_arn = base_model_arn
        self.customization_type = customization_type
        self.model_kms_key_arn = model_kms_key_arn
        self.hyper_parameters = hyper_parameters
        self.training_data_config = training_data_config
        self.validation_data_config = validation_data_config
        self.output_data_config = output_data_config
        self.training_metrics = training_metrics
        self.validation_metrics = validation_metrics
        self.region_name = region_name
        self.account_id = account_id
        self.model_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}:{self.account_id}:custom-model/{self.model_name}"
        self.creation_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        self.base_model_name = base_model_name

    def to_dict(self) -> dict[str, Any]:
        dct = {
            "baseModelArn": self.base_model_arn,
            "creationTime": self.creation_time,
            "customizationType": self.customization_type,
            "hyperParameters": self.hyper_parameters,
            "jobArn": self.job_arn,
            "jobName": self.job_name,
            "modelArn": self.model_arn,
            "modelKmsKeyArn": self.model_kms_key_arn,
            "modelName": self.model_name,
            "outputDataConfig": self.output_data_config,
            "trainingDataConfig": self.training_data_config,
            "trainingMetrics": self.training_metrics,
            "validationDataConfig": self.validation_data_config,
            "validationMetrics": self.validation_metrics,
        }
        return {k: v for k, v in dct.items() if v}


class model_invocation_logging_configuration(BaseModel):
    def __init__(self, logging_config: dict[str, Any]) -> None:
        self.logging_config = logging_config


class BedrockBackend(BaseBackend):
    """Implementation of Bedrock APIs."""

    PAGINATION_MODEL = {
        "list_model_customization_jobs": {
            "input_token": "next_token",
            "limit_key": "max_results",
            "limit_default": 100,
            "unique_attribute": "job_arn",
        },
        "list_custom_models": {
            "input_token": "next_token",
            "limit_key": "max_results",
            "limit_default": 100,
            "unique_attribute": "model_arn",
        },
    }

    def __init__(self, region_name: str, account_id: str) -> None:
        super().__init__(region_name, account_id)
        self.model_customization_jobs: dict[str, ModelCustomizationJob] = {}
        self.custom_models: dict[str, CustomModel] = {}
        self.model_invocation_logging_configuration: Optional[
            model_invocation_logging_configuration
        ] = None
        self.tagger = TaggingService()

    def _list_arns(self) -> list[str]:
        return [job.job_arn for job in self.model_customization_jobs.values()] + [
            model.model_arn for model in self.custom_models.values()
        ]

    def create_model_customization_job(
        self,
        job_name: str,
        custom_model_name: str,
        role_arn: str,
        base_model_identifier: str,
        training_data_config: dict[str, Any],
        output_data_config: dict[str, str],
        hyper_parameters: dict[str, str],
        client_request_token: Optional[str],
        customization_type: Optional[str],
        custom_model_kms_key_id: Optional[str],
        job_tags: Optional[list[dict[str, str]]],
        custom_model_tags: Optional[list[dict[str, str]]],
        validation_data_config: Optional[dict[str, Any]],
        vpc_config: Optional[dict[str, Any]],
    ) -> str:
        if job_name in self.model_customization_jobs.keys():
            raise ResourceInUseException(
                f"Model customization job {job_name} already exists"
            )
        if custom_model_name in self.custom_models.keys():
            raise ResourceInUseException(
                f"Custom model {custom_model_name} already exists"
            )
        model_customization_job = ModelCustomizationJob(
            job_name,
            custom_model_name,
            role_arn,
            base_model_identifier,
            training_data_config,
            output_data_config,
            hyper_parameters,
            self.region_name,
            self.account_id,
            client_request_token,
            customization_type,
            custom_model_kms_key_id,
            job_tags,
            custom_model_tags,
            validation_data_config,
            vpc_config,
        )
        self.model_customization_jobs[job_name] = model_customization_job
        if job_tags:
            self.tag_resource(model_customization_job.job_arn, job_tags)
        # Create associated custom model
        custom_model = CustomModel(
            custom_model_name,
            job_name,
            model_customization_job.job_arn,
            model_customization_job.base_model_arn,
            model_customization_job.hyper_parameters,
            model_customization_job.output_data_config,
            model_customization_job.training_data_config,
            model_customization_job.training_metrics,
            model_customization_job.base_model_identifier,
            self.region_name,
            self.account_id,
            model_customization_job.customization_type,
            model_customization_job.output_model_kms_key_arn,
            model_customization_job.validation_data_config,
            model_customization_job.validation_metrics,
        )
        self.custom_models[custom_model_name] = custom_model
        if custom_model_tags:
            self.tag_resource(custom_model.model_arn, custom_model_tags)
        return model_customization_job.job_arn

    def get_model_customization_job(self, job_identifier: str) -> ModelCustomizationJob:
        if job_identifier not in self.model_customization_jobs:
            raise ResourceNotFoundException(
                f"Model customization job {job_identifier} not found"
            )
        else:
            return self.model_customization_jobs[job_identifier]

    def stop_model_customization_job(self, job_identifier: str) -> None:
        if job_identifier in self.model_customization_jobs:
            self.model_customization_jobs[job_identifier].status = "Stopped"
        else:
            raise ResourceNotFoundException(
                f"Model customization job {job_identifier} not found"
            )
        return

    @paginate(pagination_model=PAGINATION_MODEL)
    def list_model_customization_jobs(
        self,
        creation_time_after: Optional[datetime],
        creation_time_before: Optional[datetime],
        status_equals: Optional[str],
        name_contains: Optional[str],
        sort_by: Optional[str],
        sort_order: Optional[str],
    ) -> list[ModelCustomizationJob]:
        customization_jobs_fetched = list(self.model_customization_jobs.values())

        if name_contains is not None:
            customization_jobs_fetched = list(
                filter(
                    lambda x: name_contains in x.job_name,
                    customization_jobs_fetched,
                )
            )

        if creation_time_after is not None:
            customization_jobs_fetched = list(
                filter(
                    lambda x: x.creation_time > str(creation_time_after),
                    customization_jobs_fetched,
                )
            )

        if creation_time_before is not None:
            customization_jobs_fetched = list(
                filter(
                    lambda x: x.creation_time < str(creation_time_before),
                    customization_jobs_fetched,
                )
            )
        if status_equals is not None:
            customization_jobs_fetched = list(
                filter(
                    lambda x: x.status == status_equals,
                    customization_jobs_fetched,
                )
            )

        if sort_by is not None:
            if sort_by == "CreationTime":
                if sort_order is not None and sort_order == "Ascending":
                    customization_jobs_fetched = sorted(
                        customization_jobs_fetched, key=lambda x: x.creation_time
                    )
                elif sort_order is not None and sort_order == "Descending":
                    customization_jobs_fetched = sorted(
                        customization_jobs_fetched,
                        key=lambda x: x.creation_time,
                        reverse=True,
                    )
                else:
                    raise ValidationException(f"Invalid sort order: {sort_order}")
            else:
                raise ValidationException(f"Invalid sort by field: {sort_by}")

        return customization_jobs_fetched

    def get_model_invocation_logging_configuration(self) -> Optional[dict[str, Any]]:
        if self.model_invocation_logging_configuration:
            return self.model_invocation_logging_configuration.logging_config
        else:
            return {}

    def put_model_invocation_logging_configuration(
        self, logging_config: dict[str, Any]
    ) -> None:
        invocation_logging = model_invocation_logging_configuration(logging_config)
        self.model_invocation_logging_configuration = invocation_logging
        return

    def get_custom_model(self, model_identifier: str) -> CustomModel:
        if model_identifier[:3] == "arn":
            for model in self.custom_models.values():
                if model.model_arn == model_identifier:
                    return model
            raise ResourceNotFoundException(
                f"Custom model {model_identifier} not found"
            )
        elif model_identifier in self.custom_models:
            return self.custom_models[model_identifier]
        else:
            raise ResourceNotFoundException(
                f"Custom model {model_identifier} not found"
            )

    def delete_custom_model(self, model_identifier: str) -> None:
        if model_identifier in self.custom_models:
            del self.custom_models[model_identifier]
        else:
            raise ResourceNotFoundException(
                f"Custom model {model_identifier} not found"
            )
        return

    @paginate(pagination_model=PAGINATION_MODEL)
    def list_custom_models(
        self,
        creation_time_before: Optional[datetime],
        creation_time_after: Optional[datetime],
        name_contains: Optional[str],
        base_model_arn_equals: Optional[str],
        foundation_model_arn_equals: Optional[str],
        sort_by: Optional[str],
        sort_order: Optional[str],
    ) -> list[CustomModel]:
        """
        The foundation_model_arn_equals-argument is not yet supported
        """
        custom_models_fetched = list(self.custom_models.values())

        if name_contains is not None:
            custom_models_fetched = list(
                filter(
                    lambda x: name_contains in x.job_name,
                    custom_models_fetched,
                )
            )

        if creation_time_after is not None:
            custom_models_fetched = list(
                filter(
                    lambda x: x.creation_time > str(creation_time_after),
                    custom_models_fetched,
                )
            )

        if creation_time_before is not None:
            custom_models_fetched = list(
                filter(
                    lambda x: x.creation_time < str(creation_time_before),
                    custom_models_fetched,
                )
            )
        if base_model_arn_equals is not None:
            custom_models_fetched = list(
                filter(
                    lambda x: x.base_model_arn == base_model_arn_equals,
                    custom_models_fetched,
                )
            )

        if sort_by is not None:
            if sort_by == "CreationTime":
                if sort_order is not None and sort_order == "Ascending":
                    custom_models_fetched = sorted(
                        custom_models_fetched, key=lambda x: x.creation_time
                    )
                elif sort_order is not None and sort_order == "Descending":
                    custom_models_fetched = sorted(
                        custom_models_fetched,
                        key=lambda x: x.creation_time,
                        reverse=True,
                    )
                else:
                    raise ValidationException(f"Invalid sort order: {sort_order}")
            else:
                raise ValidationException(f"Invalid sort by field: {sort_by}")
        return custom_models_fetched

    def tag_resource(self, resource_arn: str, tags: list[dict[str, str]]) -> None:
        if resource_arn not in self._list_arns():
            raise ResourceNotFoundException(f"Resource {resource_arn} not found")
        fixed_tags = []
        if len(tags) + len(self.tagger.list_tags_for_resource(resource_arn)) > 50:
            raise TooManyTagsException(
                "Member must have length less than or equal to 50"
            )
        for tag_dict in tags:
            fixed_tags.append({"Key": tag_dict["key"], "Value": tag_dict["value"]})
        self.tagger.tag_resource(resource_arn, fixed_tags)
        return

    def untag_resource(self, resource_arn: str, tag_keys: list[str]) -> None:
        if resource_arn not in self._list_arns():
            raise ResourceNotFoundException(f"Resource {resource_arn} not found")
        self.tagger.untag_resource_using_names(resource_arn, tag_keys)
        return

    def list_tags_for_resource(self, resource_arn: str) -> list[dict[str, str]]:
        if resource_arn not in self._list_arns():
            raise ResourceNotFoundException(f"Resource {resource_arn} not found")
        tags = self.tagger.list_tags_for_resource(resource_arn)
        fixed_tags = []
        for tag_dict in tags["Tags"]:
            fixed_tags.append({"key": tag_dict["Key"], "value": tag_dict["Value"]})
        return fixed_tags

    def delete_model_invocation_logging_configuration(self) -> None:
        if self.model_invocation_logging_configuration:
            self.model_invocation_logging_configuration.logging_config = {}
        return


bedrock_backends = BackendDict(BedrockBackend, "bedrock")