1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
"""BedrockBackend class with methods for supported APIs."""
import re
from datetime import datetime
from typing import Any, Optional
from moto.bedrock.exceptions import (
ResourceInUseException,
ResourceNotFoundException,
TooManyTagsException,
ValidationException,
)
from moto.core.base_backend import BackendDict, BaseBackend
from moto.core.common_models import BaseModel
from moto.utilities.paginator import paginate
from moto.utilities.tagging_service import TaggingService
from moto.utilities.utils import get_partition
class ModelCustomizationJob(BaseModel):
def __init__(
self,
job_name: str,
custom_model_name: str,
role_arn: str,
base_model_identifier: str,
training_data_config: dict[str, str],
output_data_config: dict[str, str],
hyper_parameters: dict[str, str],
region_name: str,
account_id: str,
client_request_token: Optional[str],
customization_type: Optional[str],
custom_model_kms_key_id: Optional[str],
job_tags: Optional[list[dict[str, str]]],
custom_model_tags: Optional[list[dict[str, str]]],
validation_data_config: Optional[dict[str, Any]],
vpc_config: Optional[dict[str, Any]],
):
self.job_name = job_name
self.custom_model_name = custom_model_name
self.role_arn = role_arn
self.client_request_token = client_request_token
self.base_model_identifier = base_model_identifier
self.customization_type = customization_type
self.custom_model_kms_key_id = custom_model_kms_key_id
self.job_tags = job_tags
self.custom_model_tags = custom_model_tags
if "s3Uri" not in training_data_config or not re.match(
r"s3://.*", training_data_config["s3Uri"]
):
raise ValidationException(
"Validation error detected: "
f"Value '{training_data_config}' at 'training_data_config' failed to satisfy constraint: "
"Member must satisfy regular expression pattern: "
"s3://.*"
)
self.training_data_config = training_data_config
if validation_data_config:
if "validators" in validation_data_config:
for validator in validation_data_config["validators"]:
if not re.match(r"s3://.*", validator["s3Uri"]):
raise ValidationException(
"Validation error detected: "
f"Value '{validator}' at 'validation_data_config' failed to satisfy constraint: "
"Member must satisfy regular expression pattern: "
"s3://.*"
)
self.validation_data_config = validation_data_config
if "s3Uri" not in output_data_config or not re.match(
r"s3://.*", output_data_config["s3Uri"]
):
raise ValidationException(
"Validation error detected: "
f"Value '{output_data_config}' at 'output_data_config' failed to satisfy constraint: "
"Member must satisfy regular expression pattern: "
"s3://.*"
)
self.output_data_config = output_data_config
self.hyper_parameters = hyper_parameters
self.vpc_config = vpc_config
self.region_name = region_name
self.account_id = account_id
self.job_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}:{self.account_id}:model-customization-job/{self.job_name}"
self.output_model_name = f"{self.custom_model_name}-{self.job_name}"
self.output_model_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}:{self.account_id}:custom-model/{self.output_model_name}"
self.status = "InProgress"
self.failure_message = "Failure Message"
self.creation_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.last_modified_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.end_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.base_model_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}::foundation-model/{self.base_model_identifier}"
self.output_model_kms_key_arn = f"arn:{get_partition(self.region_name)}:kms:{self.region_name}:{self.account_id}:key/{self.output_model_name}-kms-key"
self.training_metrics = {"trainingLoss": 0.0} # hard coded
self.validation_metrics = [{"validationLoss": 0.0}] # hard coded
def to_dict(self) -> dict[str, Any]:
dct = {
"baseModelArn": self.base_model_arn,
"clientRequestToken": self.client_request_token,
"creationTime": self.creation_time,
"customizationType": self.customization_type,
"endTime": self.end_time,
"failureMessage": self.failure_message,
"hyperParameters": self.hyper_parameters,
"jobArn": self.job_arn,
"jobName": self.job_name,
"lastModifiedTime": self.last_modified_time,
"outputDataConfig": self.output_data_config,
"outputModelArn": self.output_model_arn,
"outputModelKmsKeyArn": self.output_model_kms_key_arn,
"outputModelName": self.output_model_name,
"roleArn": self.role_arn,
"status": self.status,
"trainingDataConfig": self.training_data_config,
"trainingMetrics": self.training_metrics,
"validationDataConfig": self.validation_data_config,
"validationMetrics": self.validation_metrics,
"vpcConfig": self.vpc_config,
}
return {k: v for k, v in dct.items() if v}
class CustomModel(BaseModel):
def __init__(
self,
model_name: str,
job_name: str,
job_arn: str,
base_model_arn: str,
hyper_parameters: dict[str, str],
output_data_config: dict[str, str],
training_data_config: dict[str, str],
training_metrics: dict[str, float],
base_model_name: str,
region_name: str,
account_id: str,
customization_type: Optional[str],
model_kms_key_arn: Optional[str],
validation_data_config: Optional[dict[str, Any]],
validation_metrics: Optional[list[dict[str, float]]],
):
self.model_name = model_name
self.job_name = job_name
self.job_arn = job_arn
self.base_model_arn = base_model_arn
self.customization_type = customization_type
self.model_kms_key_arn = model_kms_key_arn
self.hyper_parameters = hyper_parameters
self.training_data_config = training_data_config
self.validation_data_config = validation_data_config
self.output_data_config = output_data_config
self.training_metrics = training_metrics
self.validation_metrics = validation_metrics
self.region_name = region_name
self.account_id = account_id
self.model_arn = f"arn:{get_partition(self.region_name)}:bedrock:{self.region_name}:{self.account_id}:custom-model/{self.model_name}"
self.creation_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.base_model_name = base_model_name
def to_dict(self) -> dict[str, Any]:
dct = {
"baseModelArn": self.base_model_arn,
"creationTime": self.creation_time,
"customizationType": self.customization_type,
"hyperParameters": self.hyper_parameters,
"jobArn": self.job_arn,
"jobName": self.job_name,
"modelArn": self.model_arn,
"modelKmsKeyArn": self.model_kms_key_arn,
"modelName": self.model_name,
"outputDataConfig": self.output_data_config,
"trainingDataConfig": self.training_data_config,
"trainingMetrics": self.training_metrics,
"validationDataConfig": self.validation_data_config,
"validationMetrics": self.validation_metrics,
}
return {k: v for k, v in dct.items() if v}
class model_invocation_logging_configuration(BaseModel):
def __init__(self, logging_config: dict[str, Any]) -> None:
self.logging_config = logging_config
class BedrockBackend(BaseBackend):
"""Implementation of Bedrock APIs."""
PAGINATION_MODEL = {
"list_model_customization_jobs": {
"input_token": "next_token",
"limit_key": "max_results",
"limit_default": 100,
"unique_attribute": "job_arn",
},
"list_custom_models": {
"input_token": "next_token",
"limit_key": "max_results",
"limit_default": 100,
"unique_attribute": "model_arn",
},
}
def __init__(self, region_name: str, account_id: str) -> None:
super().__init__(region_name, account_id)
self.model_customization_jobs: dict[str, ModelCustomizationJob] = {}
self.custom_models: dict[str, CustomModel] = {}
self.model_invocation_logging_configuration: Optional[
model_invocation_logging_configuration
] = None
self.tagger = TaggingService()
def _list_arns(self) -> list[str]:
return [job.job_arn for job in self.model_customization_jobs.values()] + [
model.model_arn for model in self.custom_models.values()
]
def create_model_customization_job(
self,
job_name: str,
custom_model_name: str,
role_arn: str,
base_model_identifier: str,
training_data_config: dict[str, Any],
output_data_config: dict[str, str],
hyper_parameters: dict[str, str],
client_request_token: Optional[str],
customization_type: Optional[str],
custom_model_kms_key_id: Optional[str],
job_tags: Optional[list[dict[str, str]]],
custom_model_tags: Optional[list[dict[str, str]]],
validation_data_config: Optional[dict[str, Any]],
vpc_config: Optional[dict[str, Any]],
) -> str:
if job_name in self.model_customization_jobs.keys():
raise ResourceInUseException(
f"Model customization job {job_name} already exists"
)
if custom_model_name in self.custom_models.keys():
raise ResourceInUseException(
f"Custom model {custom_model_name} already exists"
)
model_customization_job = ModelCustomizationJob(
job_name,
custom_model_name,
role_arn,
base_model_identifier,
training_data_config,
output_data_config,
hyper_parameters,
self.region_name,
self.account_id,
client_request_token,
customization_type,
custom_model_kms_key_id,
job_tags,
custom_model_tags,
validation_data_config,
vpc_config,
)
self.model_customization_jobs[job_name] = model_customization_job
if job_tags:
self.tag_resource(model_customization_job.job_arn, job_tags)
# Create associated custom model
custom_model = CustomModel(
custom_model_name,
job_name,
model_customization_job.job_arn,
model_customization_job.base_model_arn,
model_customization_job.hyper_parameters,
model_customization_job.output_data_config,
model_customization_job.training_data_config,
model_customization_job.training_metrics,
model_customization_job.base_model_identifier,
self.region_name,
self.account_id,
model_customization_job.customization_type,
model_customization_job.output_model_kms_key_arn,
model_customization_job.validation_data_config,
model_customization_job.validation_metrics,
)
self.custom_models[custom_model_name] = custom_model
if custom_model_tags:
self.tag_resource(custom_model.model_arn, custom_model_tags)
return model_customization_job.job_arn
def get_model_customization_job(self, job_identifier: str) -> ModelCustomizationJob:
if job_identifier not in self.model_customization_jobs:
raise ResourceNotFoundException(
f"Model customization job {job_identifier} not found"
)
else:
return self.model_customization_jobs[job_identifier]
def stop_model_customization_job(self, job_identifier: str) -> None:
if job_identifier in self.model_customization_jobs:
self.model_customization_jobs[job_identifier].status = "Stopped"
else:
raise ResourceNotFoundException(
f"Model customization job {job_identifier} not found"
)
return
@paginate(pagination_model=PAGINATION_MODEL)
def list_model_customization_jobs(
self,
creation_time_after: Optional[datetime],
creation_time_before: Optional[datetime],
status_equals: Optional[str],
name_contains: Optional[str],
sort_by: Optional[str],
sort_order: Optional[str],
) -> list[ModelCustomizationJob]:
customization_jobs_fetched = list(self.model_customization_jobs.values())
if name_contains is not None:
customization_jobs_fetched = list(
filter(
lambda x: name_contains in x.job_name,
customization_jobs_fetched,
)
)
if creation_time_after is not None:
customization_jobs_fetched = list(
filter(
lambda x: x.creation_time > str(creation_time_after),
customization_jobs_fetched,
)
)
if creation_time_before is not None:
customization_jobs_fetched = list(
filter(
lambda x: x.creation_time < str(creation_time_before),
customization_jobs_fetched,
)
)
if status_equals is not None:
customization_jobs_fetched = list(
filter(
lambda x: x.status == status_equals,
customization_jobs_fetched,
)
)
if sort_by is not None:
if sort_by == "CreationTime":
if sort_order is not None and sort_order == "Ascending":
customization_jobs_fetched = sorted(
customization_jobs_fetched, key=lambda x: x.creation_time
)
elif sort_order is not None and sort_order == "Descending":
customization_jobs_fetched = sorted(
customization_jobs_fetched,
key=lambda x: x.creation_time,
reverse=True,
)
else:
raise ValidationException(f"Invalid sort order: {sort_order}")
else:
raise ValidationException(f"Invalid sort by field: {sort_by}")
return customization_jobs_fetched
def get_model_invocation_logging_configuration(self) -> Optional[dict[str, Any]]:
if self.model_invocation_logging_configuration:
return self.model_invocation_logging_configuration.logging_config
else:
return {}
def put_model_invocation_logging_configuration(
self, logging_config: dict[str, Any]
) -> None:
invocation_logging = model_invocation_logging_configuration(logging_config)
self.model_invocation_logging_configuration = invocation_logging
return
def get_custom_model(self, model_identifier: str) -> CustomModel:
if model_identifier[:3] == "arn":
for model in self.custom_models.values():
if model.model_arn == model_identifier:
return model
raise ResourceNotFoundException(
f"Custom model {model_identifier} not found"
)
elif model_identifier in self.custom_models:
return self.custom_models[model_identifier]
else:
raise ResourceNotFoundException(
f"Custom model {model_identifier} not found"
)
def delete_custom_model(self, model_identifier: str) -> None:
if model_identifier in self.custom_models:
del self.custom_models[model_identifier]
else:
raise ResourceNotFoundException(
f"Custom model {model_identifier} not found"
)
return
@paginate(pagination_model=PAGINATION_MODEL)
def list_custom_models(
self,
creation_time_before: Optional[datetime],
creation_time_after: Optional[datetime],
name_contains: Optional[str],
base_model_arn_equals: Optional[str],
foundation_model_arn_equals: Optional[str],
sort_by: Optional[str],
sort_order: Optional[str],
) -> list[CustomModel]:
"""
The foundation_model_arn_equals-argument is not yet supported
"""
custom_models_fetched = list(self.custom_models.values())
if name_contains is not None:
custom_models_fetched = list(
filter(
lambda x: name_contains in x.job_name,
custom_models_fetched,
)
)
if creation_time_after is not None:
custom_models_fetched = list(
filter(
lambda x: x.creation_time > str(creation_time_after),
custom_models_fetched,
)
)
if creation_time_before is not None:
custom_models_fetched = list(
filter(
lambda x: x.creation_time < str(creation_time_before),
custom_models_fetched,
)
)
if base_model_arn_equals is not None:
custom_models_fetched = list(
filter(
lambda x: x.base_model_arn == base_model_arn_equals,
custom_models_fetched,
)
)
if sort_by is not None:
if sort_by == "CreationTime":
if sort_order is not None and sort_order == "Ascending":
custom_models_fetched = sorted(
custom_models_fetched, key=lambda x: x.creation_time
)
elif sort_order is not None and sort_order == "Descending":
custom_models_fetched = sorted(
custom_models_fetched,
key=lambda x: x.creation_time,
reverse=True,
)
else:
raise ValidationException(f"Invalid sort order: {sort_order}")
else:
raise ValidationException(f"Invalid sort by field: {sort_by}")
return custom_models_fetched
def tag_resource(self, resource_arn: str, tags: list[dict[str, str]]) -> None:
if resource_arn not in self._list_arns():
raise ResourceNotFoundException(f"Resource {resource_arn} not found")
fixed_tags = []
if len(tags) + len(self.tagger.list_tags_for_resource(resource_arn)) > 50:
raise TooManyTagsException(
"Member must have length less than or equal to 50"
)
for tag_dict in tags:
fixed_tags.append({"Key": tag_dict["key"], "Value": tag_dict["value"]})
self.tagger.tag_resource(resource_arn, fixed_tags)
return
def untag_resource(self, resource_arn: str, tag_keys: list[str]) -> None:
if resource_arn not in self._list_arns():
raise ResourceNotFoundException(f"Resource {resource_arn} not found")
self.tagger.untag_resource_using_names(resource_arn, tag_keys)
return
def list_tags_for_resource(self, resource_arn: str) -> list[dict[str, str]]:
if resource_arn not in self._list_arns():
raise ResourceNotFoundException(f"Resource {resource_arn} not found")
tags = self.tagger.list_tags_for_resource(resource_arn)
fixed_tags = []
for tag_dict in tags["Tags"]:
fixed_tags.append({"key": tag_dict["Key"], "value": tag_dict["Value"]})
return fixed_tags
def delete_model_invocation_logging_configuration(self) -> None:
if self.model_invocation_logging_configuration:
self.model_invocation_logging_configuration.logging_config = {}
return
bedrock_backends = BackendDict(BedrockBackend, "bedrock")
|