1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
|
import json
import math
from collections.abc import Iterable
from datetime import datetime, timedelta
from typing import Any, Optional, SupportsFloat
from moto.core.base_backend import BaseBackend
from moto.core.common_models import BackendDict, BaseModel, CloudWatchMetricProvider
from moto.core.utils import utcnow
from moto.moto_api._internal import mock_random
from ..utilities.tagging_service import TaggingService
from .exceptions import (
InvalidFormat,
InvalidParameterCombination,
InvalidParameterValue,
ResourceNotFound,
ResourceNotFoundException,
ValidationError,
)
from .metric_data_expression_parser import parse_expression
from .utils import (
make_arn_for_alarm,
make_arn_for_dashboard,
make_arn_for_rule,
)
_EMPTY_LIST: Any = ()
class Dimension:
def __init__(self, name: Optional[str], value: Optional[str]):
self.name = name
self.value = value
def __eq__(self, item: Any) -> bool:
if isinstance(item, Dimension):
return self.name == item.name and (
self.value is None or item.value is None or self.value == item.value
)
return False
def __lt__(self, other: "Dimension") -> bool:
return self.name < other.name and self.value < other.name # type: ignore[operator]
class Metric:
def __init__(self, metric_name: str, namespace: str, dimensions: list[Dimension]):
self.metric_name = metric_name
self.namespace = namespace
self.dimensions = dimensions
class MetricStat:
def __init__(self, metric: Metric, period: str, stat: str, unit: str):
self.metric = metric
self.period = period
self.stat = stat
self.unit = unit
class MetricDataQuery:
def __init__(
self,
query_id: str,
label: str,
period: str,
return_data: str,
expression: Optional[str] = None,
metric_stat: Optional[MetricStat] = None,
):
self.id = query_id
self.label = label
self.period = period
self.return_data = return_data
self.expression = expression
self.metric_stat = metric_stat
def daterange(
start: datetime,
stop: datetime,
step: timedelta = timedelta(days=1),
inclusive: bool = False,
) -> Iterable[datetime]:
"""
This method will iterate from `start` to `stop` datetimes with a timedelta step of `step`
(supports iteration forwards or backwards in time)
:param start: start datetime
:param stop: end datetime
:param step: step size as a timedelta
:param inclusive: if True, last item returned will be as step closest to `end` (or `end` if no remainder).
"""
# inclusive=False to behave like range by default
total_step_secs = step.total_seconds()
assert total_step_secs != 0
if total_step_secs > 0:
while start < stop:
yield start
start = start + step
else:
while stop < start:
yield start
start = start + step
if inclusive and start == stop:
yield start
class Alarm(BaseModel):
def __init__(
self,
account_id: str,
region_name: str,
name: str,
namespace: str,
metric_name: str,
metric_data_queries: Optional[list[MetricDataQuery]],
comparison_operator: str,
evaluation_periods: int,
datapoints_to_alarm: Optional[int],
period: int,
threshold: float,
statistic: str,
extended_statistic: Optional[str],
description: str,
dimensions: list[dict[str, str]],
alarm_actions: list[str],
ok_actions: Optional[list[str]],
insufficient_data_actions: Optional[list[str]],
unit: Optional[str],
actions_enabled: bool,
treat_missing_data: Optional[str],
evaluate_low_sample_count_percentile: Optional[str],
threshold_metric_id: Optional[str],
rule: Optional[str],
):
self.region_name = region_name
self.name = name
self.alarm_arn = make_arn_for_alarm(region_name, account_id, name)
self.namespace = namespace
self.metric_name = metric_name
self.metric_data_queries = metric_data_queries or []
self.comparison_operator = comparison_operator
self.evaluation_periods = evaluation_periods
self.datapoints_to_alarm = datapoints_to_alarm
self.period = period
self.threshold = threshold
self.statistic = statistic
self.extended_statistic = extended_statistic
self.description = description
self.dimensions = [
Dimension(dimension["Name"], dimension["Value"]) for dimension in dimensions
]
self.actions_enabled = True if actions_enabled is None else actions_enabled
self.alarm_actions = alarm_actions
self.ok_actions = ok_actions or []
self.insufficient_data_actions = insufficient_data_actions or []
self.unit = unit
self.configuration_updated_timestamp = utcnow()
self.treat_missing_data = treat_missing_data
self.evaluate_low_sample_count_percentile = evaluate_low_sample_count_percentile
self.threshold_metric_id = threshold_metric_id
self.history: list[Any] = []
self.state_reason = "Unchecked: Initial alarm creation"
self.state_reason_data = "{}"
self.state_value = "OK"
self.state_updated_timestamp = utcnow()
# only used for composite alarms
self.rule = rule
def update_state(self, reason: str, reason_data: str, state_value: str) -> None:
# History type, that then decides what the rest of the items are, can be one of ConfigurationUpdate | StateUpdate | Action
self.history.append(
(
"StateUpdate",
self.state_reason,
self.state_reason_data,
self.state_value,
self.state_updated_timestamp,
)
)
self.state_reason = reason
self.state_reason_data = reason_data
self.state_value = state_value
self.state_updated_timestamp = utcnow()
def are_dimensions_same(
metric_dimensions: list[Dimension], dimensions: list[Dimension]
) -> bool:
if len(metric_dimensions) != len(dimensions):
return False
for dimension in metric_dimensions:
for new_dimension in dimensions:
if (
dimension.name != new_dimension.name
or dimension.value != new_dimension.value
):
return False
return True
class MetricDatumBase(BaseModel):
"""
Base class for Metrics Datum (represents value or statistics set by put-metric-data)
"""
def __init__(
self,
namespace: str,
name: str,
dimensions: list[dict[str, str]],
timestamp: Optional[datetime],
unit: Any = None,
):
self.namespace = namespace
self.name = name
self.timestamp = timestamp or utcnow()
self.dimensions = [
Dimension(dimension["Name"], dimension["Value"]) for dimension in dimensions
]
self.unit = unit
def filter(
self,
namespace: Optional[str],
name: Optional[str],
dimensions: list[dict[str, str]],
already_present_metrics: Optional[list["MetricDatumBase"]] = None,
) -> bool:
if namespace and namespace != self.namespace:
return False
if name and name != self.name:
return False
for metric in already_present_metrics or []:
if (
(
self.dimensions
and are_dimensions_same(metric.dimensions, self.dimensions)
)
and self.name == metric.name
and self.namespace == metric.namespace
): # should be considered as already present only when name, namespace and dimensions all three are same
return False
if dimensions and any(
Dimension(d["Name"], d.get("Value")) not in self.dimensions
for d in dimensions
):
return False
return True
class MetricDatum(MetricDatumBase):
"""
Single Metric value, represents the "value" (or a single value from the list "values") used in put-metric-data
"""
def __init__(
self,
namespace: str,
name: str,
value: float,
dimensions: list[dict[str, str]],
timestamp: Optional[datetime],
unit: Any = None,
):
super().__init__(namespace, name, dimensions, timestamp, unit)
self.value = value
class MetricAggregatedDatum(MetricDatumBase):
"""
Metric Statistics, represents "statistics-values" used in put-metric-data
"""
def __init__(
self,
namespace: str,
name: str,
min_stat: float,
max_stat: float,
sample_count: float,
sum_stat: float,
dimensions: list[dict[str, str]],
timestamp: Optional[datetime],
unit: Any = None,
):
super().__init__(namespace, name, dimensions, timestamp, unit)
self.min = min_stat
self.max = max_stat
self.sample_count = sample_count
self.sum = sum_stat
class Dashboard(BaseModel):
def __init__(self, account_id: str, region_name: str, name: str, body: str):
# Guaranteed to be unique for now as the name is also the key of a dictionary where they are stored
self.arn = make_arn_for_dashboard(account_id, region_name, name)
self.name = name
self.body = body
self.last_modified = datetime.now()
@property
def size(self) -> int:
return len(self)
def __len__(self) -> int:
return len(self.body)
def __repr__(self) -> str:
return f"<CloudWatchDashboard {self.name}>"
class Statistics:
"""
Helper class to calculate statics for a list of metrics (MetricDatum, or MetricAggregatedDatum)
"""
def __init__(self, stats: list[str], dt: datetime, unit: Optional[str] = None):
self.timestamp: datetime = dt or utcnow()
self.metric_data: list[MetricDatumBase] = []
self.stats = stats
self.unit = unit
def get_statistics_for_type(self, stat: str) -> Optional[SupportsFloat]:
"""Calculates the statistic for the metric_data provided
:param stat: the statistic that should be returned, case-sensitive (Sum, Average, Minium, Maximum, SampleCount)
:return: the statistic of the current 'metric_data' in this class, or 0
"""
if stat == "Sum":
return self.sum
if stat == "Average":
return self.average
if stat == "Minimum":
return self.minimum
if stat == "Maximum":
return self.maximum
if stat == "SampleCount":
return self.sample_count
return None
@property
def metric_single_values_list(self) -> list[float]:
"""
:return: list of all values for the MetricDatum instances of the metric_data list
"""
return [m.value for m in self.metric_data or [] if isinstance(m, MetricDatum)]
@property
def metric_aggregated_list(self) -> list[MetricAggregatedDatum]:
"""
:return: list of all MetricAggregatedDatum instances from the metric_data list
"""
return [
s for s in self.metric_data or [] if isinstance(s, MetricAggregatedDatum)
]
@property
def sample_count(self) -> Optional[SupportsFloat]:
if "SampleCount" not in self.stats:
return None
return self.calc_sample_count()
@property
def sum(self) -> Optional[SupportsFloat]:
if "Sum" not in self.stats:
return None
return self.calc_sum()
@property
def minimum(self) -> Optional[SupportsFloat]:
if "Minimum" not in self.stats:
return None
if not self.metric_single_values_list and not self.metric_aggregated_list:
return None
metrics = self.metric_single_values_list + [
s.min for s in self.metric_aggregated_list
]
return min(metrics)
@property
def maximum(self) -> Optional[SupportsFloat]:
if "Maximum" not in self.stats:
return None
if not self.metric_single_values_list and not self.metric_aggregated_list:
return None
metrics = self.metric_single_values_list + [
s.max for s in self.metric_aggregated_list
]
return max(metrics)
@property
def average(self) -> Optional[SupportsFloat]:
if "Average" not in self.stats:
return None
sample_count = self.calc_sample_count()
if not sample_count:
return None
return self.calc_sum() / sample_count
def calc_sample_count(self) -> float:
return len(self.metric_single_values_list) + sum(
[s.sample_count for s in self.metric_aggregated_list]
)
def calc_sum(self) -> float:
return sum(self.metric_single_values_list) + sum(
[s.sum for s in self.metric_aggregated_list]
)
class InsightRule(BaseModel):
def __init__(
self,
account_id: str,
region_name: str,
definition: str,
name: str,
state: str,
schema: Optional[str],
managed_rule: Optional[bool],
):
self.definition = definition
self.name = name
self.schema = schema or '{"Name" : "CloudWatchLogRule", "Version" : 1}'
self.state = state
self.managed_rule = managed_rule or False
self.rule_arn = make_arn_for_rule(region_name, account_id, name)
class CloudWatchBackend(BaseBackend):
def __init__(self, region_name: str, account_id: str):
super().__init__(region_name, account_id)
self.alarms: dict[str, Alarm] = {}
self.dashboards: dict[str, Dashboard] = {}
self.metric_data: list[MetricDatumBase] = []
self.paged_metric_data: dict[str, list[MetricDatumBase]] = {}
self.insight_rules: dict[str, InsightRule] = {}
self.tagger = TaggingService()
@property
# Retrieve a list of all OOTB metrics that are provided by metrics providers
# Computed on the fly
def aws_metric_data(self) -> list[MetricDatumBase]:
providers = CloudWatchMetricProvider.__subclasses__()
md = []
for provider in providers:
md.extend(
provider.get_cloudwatch_metrics(
self.account_id, region=self.region_name
)
)
return md
def put_metric_alarm(
self,
name: str,
namespace: str,
metric_name: str,
comparison_operator: str,
evaluation_periods: int,
period: int,
threshold: float,
statistic: str,
description: str,
dimensions: list[dict[str, str]],
alarm_actions: list[str],
metric_data_queries: Optional[list[MetricDataQuery]] = None,
datapoints_to_alarm: Optional[int] = None,
extended_statistic: Optional[str] = None,
ok_actions: Optional[list[str]] = None,
insufficient_data_actions: Optional[list[str]] = None,
unit: Optional[str] = None,
actions_enabled: bool = True,
treat_missing_data: Optional[str] = None,
evaluate_low_sample_count_percentile: Optional[str] = None,
threshold_metric_id: Optional[str] = None,
rule: Optional[str] = None,
tags: Optional[list[dict[str, str]]] = None,
) -> Alarm:
if extended_statistic and not extended_statistic.startswith("p"):
raise InvalidParameterValue(
f"The value {extended_statistic} for parameter ExtendedStatistic is not supported."
)
if (
evaluate_low_sample_count_percentile
and evaluate_low_sample_count_percentile not in ("evaluate", "ignore")
):
raise ValidationError(
f"Option {evaluate_low_sample_count_percentile} is not supported. "
"Supported options for parameter EvaluateLowSampleCountPercentile are evaluate and ignore."
)
alarm = Alarm(
account_id=self.account_id,
region_name=self.region_name,
name=name,
namespace=namespace,
metric_name=metric_name,
metric_data_queries=metric_data_queries,
comparison_operator=comparison_operator,
evaluation_periods=evaluation_periods,
datapoints_to_alarm=datapoints_to_alarm,
period=period,
threshold=threshold,
statistic=statistic,
extended_statistic=extended_statistic,
description=description,
dimensions=dimensions,
alarm_actions=alarm_actions,
ok_actions=ok_actions,
insufficient_data_actions=insufficient_data_actions,
unit=unit,
actions_enabled=actions_enabled,
treat_missing_data=treat_missing_data,
evaluate_low_sample_count_percentile=evaluate_low_sample_count_percentile,
threshold_metric_id=threshold_metric_id,
rule=rule,
)
self.alarms[name] = alarm
if tags:
self.tagger.tag_resource(alarm.alarm_arn, tags)
return alarm
def describe_alarms(self) -> Iterable[Alarm]:
return self.alarms.values()
@staticmethod
def _list_element_starts_with(items: list[str], needle: str) -> bool:
"""True of any of the list elements starts with needle"""
for item in items:
if item.startswith(needle):
return True
return False
def get_alarms_by_action_prefix(self, action_prefix: str) -> Iterable[Alarm]:
return [
alarm
for alarm in self.alarms.values()
if CloudWatchBackend._list_element_starts_with(
alarm.alarm_actions, action_prefix
)
]
def get_alarms_by_alarm_name_prefix(self, name_prefix: str) -> Iterable[Alarm]:
return [
alarm
for alarm in self.alarms.values()
if alarm.name.startswith(name_prefix)
]
def get_alarms_by_alarm_names(self, alarm_names: list[str]) -> Iterable[Alarm]:
return [alarm for alarm in self.alarms.values() if alarm.name in alarm_names]
def get_alarms_by_state_value(self, target_state: str) -> Iterable[Alarm]:
return filter(
lambda alarm: alarm.state_value == target_state, self.alarms.values()
)
def delete_alarms(self, alarm_names: list[str]) -> None:
for alarm_name in alarm_names:
self.alarms.pop(alarm_name, None)
def put_metric_data(
self, namespace: str, metric_data: list[dict[str, Any]]
) -> None:
for i, metric in enumerate(metric_data):
self._validate_parameters_put_metric_data(metric, i + 1)
for metric_member in metric_data:
# Preserve "datetime" for get_metric_statistics comparisons
timestamp = metric_member.get("Timestamp")
metric_name = metric_member["MetricName"]
dimension = metric_member.get("Dimensions", _EMPTY_LIST)
unit = metric_member.get("Unit")
# put_metric_data can include "value" as single value or "values" as a list
if metric_member.get("Values"):
values = metric_member["Values"]
# value[i] should be added count[i] times (with default count 1)
counts = metric_member.get("Counts") or ["1"] * len(values)
for i in range(0, len(values)):
value = values[i]
timestamp = metric_member.get("Timestamp")
# add the value count[i] times
for _ in range(0, int(float(counts[i]))):
self.metric_data.append(
MetricDatum(
namespace=namespace,
name=metric_name,
value=float(value),
dimensions=dimension,
timestamp=timestamp,
unit=unit,
)
)
elif metric_member.get("StatisticValues"):
stats = metric_member["StatisticValues"]
self.metric_data.append(
MetricAggregatedDatum(
namespace=namespace,
name=metric_name,
sum_stat=float(stats["Sum"]),
min_stat=float(stats["Minimum"]),
max_stat=float(stats["Maximum"]),
sample_count=float(stats["SampleCount"]),
dimensions=dimension,
timestamp=timestamp,
unit=unit,
)
)
else:
# there is only a single value
self.metric_data.append(
MetricDatum(
namespace,
metric_name,
float(metric_member.get("Value", 0)),
dimension,
timestamp,
unit,
)
)
def get_metric_data(
self,
queries: list[dict[str, Any]],
start_time: datetime,
end_time: datetime,
scan_by: str = "TimestampAscending",
) -> list[dict[str, Any]]:
start_time = start_time.replace(microsecond=0)
end_time = end_time.replace(microsecond=0)
if start_time > end_time:
raise ValidationError(
"The parameter EndTime must be greater than StartTime."
)
if start_time == end_time:
raise ValidationError(
"The parameter StartTime must not equal parameter EndTime."
)
period_data = [
md for md in self.get_all_metrics() if start_time <= md.timestamp < end_time
]
results = []
results_to_return = []
metric_stat_queries = [q for q in queries if "MetricStat" in q]
metric_math_expression_queries = [
q
for q in queries
if "Expression" in q and not q["Expression"].startswith("SELECT")
]
metric_insights_expression_queries = [
q
for q in queries
if "Expression" in q and q["Expression"].startswith("SELECT")
]
for query in metric_stat_queries:
period_start_time = start_time
metric_stat = query["MetricStat"]
query_ns = metric_stat["Metric"]["Namespace"]
query_name = metric_stat["Metric"]["MetricName"]
delta = timedelta(seconds=int(metric_stat["Period"]))
dimensions = [
Dimension(name=d["Name"], value=d["Value"])
for d in metric_stat["Metric"].get("Dimensions", [])
]
unit = metric_stat.get("Unit")
result_vals: list[SupportsFloat] = []
timestamps: list[datetime] = []
stat = metric_stat["Stat"]
while period_start_time <= end_time:
period_end_time = period_start_time + delta
period_md = [
period_md
for period_md in period_data
if period_start_time <= period_md.timestamp < period_end_time
]
query_period_data = [
md
for md in period_md
if md.namespace == query_ns and md.name == query_name
]
if dimensions:
query_period_data = [
md
for md in period_md
if sorted(md.dimensions) == sorted(dimensions)
and md.name == query_name
]
# Filter based on unit value
if unit:
query_period_data = [
md for md in query_period_data if md.unit == unit
]
if len(query_period_data) > 0:
stats = Statistics([stat], period_start_time)
stats.metric_data = query_period_data
result_vals.append(stats.get_statistics_for_type(stat)) # type: ignore[arg-type]
timestamps.append(stats.timestamp)
period_start_time += delta
if scan_by == "TimestampDescending" and len(timestamps) > 0:
timestamps.reverse()
result_vals.reverse()
label = query.get("Label") or f"{query_name} {stat}"
results.append(
{
"id": query["Id"],
"label": label,
"values": result_vals,
"timestamps": timestamps,
"status_code": "Complete",
}
)
if query.get("ReturnData", True):
results_to_return.append(
{
"id": query["Id"],
"label": label,
"values": result_vals,
"timestamps": timestamps,
"status_code": "Complete",
}
)
# Metric Math expression Queries run on top of the results of other queries
for query in metric_math_expression_queries:
label = query.get("Label") or query["Id"]
result_vals, timestamps = parse_expression(query["Expression"], results)
results_to_return.append(
{
"id": query["Id"],
"label": label,
"values": result_vals,
"timestamps": timestamps,
"status_code": "Complete",
}
)
# Metric Insights Expression Queries act on all results, and are essentially SQL queries
for query in metric_insights_expression_queries:
period_start_time = start_time
delta = timedelta(seconds=int(query["Period"]))
result_vals: list[SupportsFloat] = [] # type: ignore[no-redef]
timestamps: list[datetime] = [] # type: ignore[no-redef]
while period_start_time <= end_time:
period_end_time = period_start_time + delta
period_md = [
period_md
for period_md in period_data
if period_start_time <= period_md.timestamp < period_end_time
]
# https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-metrics-insights-querylanguage.html
# We should filter even further, but Moto currently does not support Metrics Insights Queries
# Let's just add all metric data found within this period
if len(period_md) > 0:
stats = Statistics(["Sum"], period_start_time)
stats.metric_data = period_md
result_vals.append(stats.get_statistics_for_type("Sum")) # type: ignore[arg-type]
timestamps.append(stats.timestamp)
period_start_time += delta
if scan_by == "TimestampDescending" and len(timestamps) > 0:
timestamps.reverse()
result_vals.reverse()
results_to_return.append(
{
"id": query["Id"],
"label": (query.get("Label") or query["Id"]),
"values": result_vals,
"timestamps": timestamps,
"status_code": "Complete",
}
)
return results_to_return
def get_metric_statistics(
self,
namespace: str,
metric_name: str,
start_time: datetime,
end_time: datetime,
period: int,
stats: list[str],
dimensions: list[dict[str, str]],
unit: Optional[str] = None,
) -> list[Statistics]:
start_time = start_time.replace(microsecond=0)
end_time = end_time.replace(microsecond=0)
if start_time >= end_time:
raise InvalidParameterValue(
"The parameter StartTime must be less than the parameter EndTime."
)
period_delta = timedelta(seconds=period)
filtered_data = [
md
for md in self.get_all_metrics()
if md.namespace == namespace
and md.name == metric_name
and start_time <= md.timestamp < end_time
]
if unit:
filtered_data = [md for md in filtered_data if md.unit == unit]
if dimensions:
filtered_data = [
md for md in filtered_data if md.filter(None, None, dimensions)
]
# earliest to oldest
filtered_data = sorted(filtered_data, key=lambda x: x.timestamp)
if not filtered_data:
return []
idx = 0
data: list[Statistics] = []
for dt in daterange(
filtered_data[0].timestamp,
filtered_data[-1].timestamp + period_delta,
period_delta,
):
s = Statistics(stats, dt)
while idx < len(filtered_data) and filtered_data[idx].timestamp < (
dt + period_delta
):
s.metric_data.append(filtered_data[idx])
s.unit = filtered_data[idx].unit
idx += 1
if not s.metric_data:
continue
data.append(s)
return data
def get_all_metrics(self) -> list[MetricDatumBase]:
return self.metric_data + self.aws_metric_data
def put_dashboard(self, name: str, body: str) -> None:
self.dashboards[name] = Dashboard(self.account_id, self.region_name, name, body)
def list_dashboards(self, prefix: str = "") -> Iterable[Dashboard]:
for key, value in self.dashboards.items():
if key.startswith(prefix):
yield value
def delete_dashboards(self, dashboards: list[str]) -> Optional[str]:
to_delete = set(dashboards)
all_dashboards = set(self.dashboards.keys())
left_over = to_delete - all_dashboards
if len(left_over) > 0:
# Some dashboards are not found
db_list = ", ".join(left_over)
return f"The specified dashboard does not exist. [{db_list}]"
for dashboard in to_delete:
del self.dashboards[dashboard]
return None
def get_dashboard(self, dashboard: str) -> Optional[Dashboard]:
return self.dashboards.get(dashboard)
def set_alarm_state(
self, alarm_name: str, reason: str, reason_data: str, state_value: str
) -> None:
try:
if reason_data is not None:
json.loads(reason_data)
except ValueError:
raise InvalidFormat("Unknown")
if alarm_name not in self.alarms:
raise ResourceNotFound
if state_value not in ("OK", "ALARM", "INSUFFICIENT_DATA"):
raise ValidationError(
"1 validation error detected: "
f"Value '{state_value}' at 'stateValue' failed to satisfy constraint: "
"Member must satisfy enum value set: [INSUFFICIENT_DATA, ALARM, OK]"
)
self.alarms[alarm_name].update_state(reason, reason_data, state_value)
def list_metrics(
self,
next_token: Optional[str],
namespace: str,
metric_name: str,
dimensions: list[dict[str, str]],
) -> tuple[Optional[str], list[MetricDatumBase]]:
if next_token:
if next_token not in self.paged_metric_data:
raise InvalidParameterValue("Request parameter NextToken is invalid")
else:
metrics = self.paged_metric_data[next_token]
del self.paged_metric_data[next_token] # Cant reuse same token twice
return self._get_paginated(metrics)
else:
metrics = self.get_filtered_metrics(metric_name, namespace, dimensions)
return self._get_paginated(metrics)
def get_filtered_metrics(
self, metric_name: str, namespace: str, dimensions: list[dict[str, str]]
) -> list[MetricDatumBase]:
metrics = self.get_all_metrics()
new_metrics: list[MetricDatumBase] = []
for md in metrics:
if md.filter(
namespace=namespace,
name=metric_name,
dimensions=dimensions,
already_present_metrics=new_metrics,
):
new_metrics.append(md)
return new_metrics
def list_tags_for_resource(self, arn: str) -> dict[str, str]:
return self.tagger.get_tag_dict_for_resource(arn)
def tag_resource(self, arn: str, tags: list[dict[str, str]]) -> None:
# From boto3:
# Currently, the only CloudWatch resources that can be tagged are alarms and Contributor Insights rules.
all_arns = [alarm.alarm_arn for alarm in self.describe_alarms()]
if arn not in all_arns:
raise ResourceNotFoundException
self.tagger.tag_resource(arn, tags)
def untag_resource(self, arn: str, tag_keys: list[str]) -> None:
if arn not in self.tagger.tags.keys():
raise ResourceNotFoundException
self.tagger.untag_resource_using_names(arn, tag_keys)
def _get_paginated(
self, metrics: list[MetricDatumBase]
) -> tuple[Optional[str], list[MetricDatumBase]]:
if len(metrics) > 500:
next_token = str(mock_random.uuid4())
self.paged_metric_data[next_token] = metrics[500:]
return next_token, metrics[0:500]
else:
return None, metrics
def _validate_parameters_put_metric_data(
self, metric: dict[str, Any], query_num: int
) -> None:
"""Runs some basic validation of the Metric Query
:param metric: represents one metric query
:param query_num: the query number (starting from 1)
:returns: nothing if the validation passes, else an exception is thrown
:raises: InvalidParameterValue
:raises: InvalidParameterCombination
"""
# basic validation of input
if math.isnan(metric.get("Value", 0.0)):
# single value
raise InvalidParameterValue(
f"The value NaN for parameter MetricData.member.{query_num}.Value is invalid."
)
if metric.get("Values"):
# list of values
if "Value" in metric:
raise InvalidParameterValue(
f"The parameters MetricData.member.{query_num}.Value and MetricData.member.{query_num}.Values are mutually exclusive and you have specified both."
)
if metric.get("Counts"):
if len(metric["Counts"]) != len(metric["Values"]):
raise InvalidParameterValue(
f"The parameters MetricData.member.{query_num}.Values and MetricData.member.{query_num}.Counts must be of the same size."
)
for value in metric["Values"]:
if math.isnan(value):
raise InvalidParameterValue(
f"The value {value} for parameter MetricData.member.{query_num}.Values is invalid."
)
if metric.get("StatisticValues"):
if metric.get("Value"):
raise InvalidParameterCombination(
f"The parameters MetricData.member.{query_num}.Value and MetricData.member.{query_num}.StatisticValues are mutually exclusive and you have specified both."
)
# aggregated (statistic) for values, must contain sum, maximum, minimum and sample count
statistic_values = metric["StatisticValues"]
expected = ["Sum", "Maximum", "Minimum", "SampleCount"]
for stat in expected:
if stat not in statistic_values:
raise InvalidParameterValue(
f'Missing required parameter in MetricData[{query_num}].StatisticValues: "{stat}"'
)
def put_insight_rule(
self,
name: str,
state: str,
definition: str,
tags: Optional[list[dict[str, str]]] = None,
) -> InsightRule:
rule = InsightRule(
account_id=self.account_id,
region_name=self.region_name,
definition=definition,
name=name,
state=state,
schema='{"Name" : "CloudWatchLogRule", "Version" : 1}',
managed_rule=False,
)
if tags:
self.tagger.tag_resource(rule.rule_arn, tags)
self.insight_rules[name] = rule
return rule
def describe_insight_rules(
self,
next_token: Optional[str] = "",
max_results: Optional[int] = 500,
) -> list[InsightRule]:
rules = list(self.insight_rules.values())
if max_results is None or len(rules) <= max_results:
return rules
return rules[:max_results]
def delete_insight_rules(self, rule_names: list[str]) -> list[dict[str, Any]]:
failures = []
for rule_name in list(self.insight_rules.keys()):
if rule_name in rule_names:
rule = self.insight_rules.get(rule_name)
if rule and rule.managed_rule:
failures.append(
{
"FailureResource": rule_name,
"ExceptionType": "InvalidParameterValue",
"FailureCode": 400,
"FailureDescription": "The value of an input parameter is bad or out-of-range.",
}
)
else:
del self.insight_rules[rule_name]
return failures
def disable_insight_rules(self, rule_names: list[str]) -> list[dict[str, Any]]:
failures = []
for rule_name in list(self.insight_rules.keys()):
if rule_name in rule_names:
rule = self.insight_rules.get(rule_name)
if rule and rule.managed_rule:
failures.append(
{
"FailureResource": rule_name,
"ExceptionType": "InvalidParameterValue",
"FailureCode": 400,
"FailureDescription": "The value of an input parameter is bad or out-of-range.",
}
)
else:
self.insight_rules[rule_name].state = "DISABLED"
return failures
def enable_insight_rules(self, rule_names: list[str]) -> list[dict[str, Any]]:
failures = []
for rule_name in list(self.insight_rules.keys()):
if rule_name in rule_names:
rule = self.insight_rules.get(rule_name)
if rule and rule.managed_rule:
failures.append(
{
"FailureResource": rule_name,
"ExceptionType": "InvalidParameterValue",
"FailureCode": 400,
"FailureDescription": "The value of an input parameter is bad or out-of-range.",
}
)
else:
self.insight_rules[rule_name].state = "ENABLED"
return failures
cloudwatch_backends = BackendDict(CloudWatchBackend, "cloudwatch")
|