1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
"""ComprehendBackend class with methods for supported APIs."""
import random
import uuid
from collections.abc import Iterable
from datetime import datetime, timezone
from typing import Any, Optional
from moto.core.base_backend import BackendDict, BaseBackend
from moto.core.common_models import BaseModel
from moto.utilities.tagging_service import TaggingService
from moto.utilities.utils import get_partition
from .exceptions import (
DetectPIIValidationException,
InvalidRequestException,
ResourceNotFound,
TextSizeLimitExceededException,
)
CANNED_DETECT_RESPONSE = [
{
"Score": 0.9999890923500061,
"Type": "NAME",
"BeginOffset": 50,
"EndOffset": 58,
},
{
"Score": 0.9999966621398926,
"Type": "EMAIL",
"BeginOffset": 230,
"EndOffset": 259,
},
{
"Score": 0.9999954700469971,
"Type": "BANK_ACCOUNT_NUMBER",
"BeginOffset": 334,
"EndOffset": 349,
},
]
CANNED_PHRASES_RESPONSE = [
{
"Score": 0.9999890923500061,
"BeginOffset": 50,
"EndOffset": 58,
},
{
"Score": 0.9999966621398926,
"BeginOffset": 230,
"EndOffset": 259,
},
{
"Score": 0.9999954700469971,
"BeginOffset": 334,
"EndOffset": 349,
},
]
CANNED_SENTIMENT_RESPONSE = {
"Sentiment": "NEUTRAL",
"SentimentScore": {
"Positive": 0.008101312443614006,
"Negative": 0.0002824589901138097,
"Neutral": 0.9916020035743713,
"Mixed": 1.4156351426208857e-05,
},
}
class EntityRecognizer(BaseModel):
def __init__(
self,
region_name: str,
account_id: str,
language_code: str,
input_data_config: dict[str, Any],
data_access_role_arn: str,
version_name: str,
recognizer_name: str,
volume_kms_key_id: str,
vpc_config: dict[str, list[str]],
model_kms_key_id: str,
model_policy: str,
):
self.name = recognizer_name
self.arn = f"arn:{get_partition(region_name)}:comprehend:{region_name}:{account_id}:entity-recognizer/{recognizer_name}"
if version_name:
self.arn += f"/version/{version_name}"
self.language_code = language_code
self.input_data_config = input_data_config
self.data_access_role_arn = data_access_role_arn
self.version_name = version_name
self.volume_kms_key_id = volume_kms_key_id
self.vpc_config = vpc_config
self.model_kms_key_id = model_kms_key_id
self.model_policy = model_policy
self.status = "TRAINED"
def to_dict(self) -> dict[str, Any]:
return {
"EntityRecognizerArn": self.arn,
"LanguageCode": self.language_code,
"Status": self.status,
"InputDataConfig": self.input_data_config,
"DataAccessRoleArn": self.data_access_role_arn,
"VersionName": self.version_name,
"VolumeKmsKeyId": self.volume_kms_key_id,
"VpcConfig": self.vpc_config,
"ModelKmsKeyId": self.model_kms_key_id,
"ModelPolicy": self.model_policy,
}
class DocumentClassifier(BaseModel):
def __init__(
self,
region_name: str,
account_id: str,
language_code: str,
version_name: str,
input_data_config: dict[str, Any],
output_data_config: dict[str, Any],
data_access_role_arn: str,
document_classifier_name: str,
volume_kms_key_id: str,
client_request_token: str,
mode: str,
vpc_config: dict[str, list[str]],
model_kms_key_id: str,
model_policy: str,
):
self.name = document_classifier_name
self.arn = f"arn:{get_partition(region_name)}:comprehend:{region_name}:{account_id}:document-classifier/{document_classifier_name}/{version_name}"
self.language_code = language_code
self.version_name = version_name
self.input_data_config = input_data_config
self.output_data_config = output_data_config
self.data_access_role_arn = data_access_role_arn
self.volume_kms_key_id = volume_kms_key_id
self.client_request_token = client_request_token
self.mode = mode
self.vpc_config = vpc_config
self.model_kms_key_id = model_kms_key_id
self.model_policy = model_policy
self.status = "TRAINING"
def to_dict(self) -> dict[str, Any]:
return {
"DocumentClassifierArn": self.arn,
"LanguageCode": self.language_code,
"Status": self.status,
"InputDataConfig": self.input_data_config,
"DataAccessRoleArn": self.data_access_role_arn,
"VolumeKmsKeyId": self.volume_kms_key_id,
"Mode": self.mode,
"VpcConfig": self.vpc_config,
"ModelKmsKeyId": self.model_kms_key_id,
"ModelPolicy": self.model_policy,
}
class Endpoint(BaseModel):
def __init__(
self,
endpoint_name: str,
region_name: str,
account_id: str,
model_arn: str,
client_request_token: str,
data_access_role_arn: str,
flywheel_arn: str,
desired_inference_units: int,
):
self.name = endpoint_name
self.arn = f"arn:{get_partition(region_name)}:comprehend:{region_name}:{account_id}:endpoint/{endpoint_name}/{model_arn}"
self.model_arn = model_arn
self.client_request_token = client_request_token
self.data_access_role_arn = data_access_role_arn
self.flywheel_arn = flywheel_arn
self.desired_inference_units = desired_inference_units
self.status = "IN_SERVICE"
def to_dict(self) -> dict[str, Any]:
return {
"EndpointArn": self.arn,
"ModelArn": self.model_arn,
"ClientRequestToken": self.client_request_token,
"DataAccessRoleArn": self.data_access_role_arn,
"FlywheelArn": self.flywheel_arn,
"DesiredInferenceUnits": self.desired_inference_units,
"Status": self.status,
}
class Flywheel(BaseModel):
def __init__(
self,
region_name: str,
account_id: str,
flywheel_name: str,
active_model_arn: str,
data_access_role_arn: str,
task_config: dict[str, Any],
model_type: str,
data_lake_s3_uri: str,
data_security_config: dict[str, Any],
client_request_token: str,
):
self.name = flywheel_name
self.arn = f"arn:{get_partition(region_name)}:comprehend:{region_name}:{account_id}:flywheel/{flywheel_name}"
self.active_model_arn = active_model_arn
self.data_access_role_arn = data_access_role_arn
self.task_config = task_config
self.model_type = model_type
self.data_lake_s3_uri = data_lake_s3_uri
self.data_security_config = data_security_config
self.client_request_token = client_request_token
self.status = "ACTIVE"
def to_dict(self) -> dict[str, Any]:
return {
"FlywheelArn": self.arn,
"ActiveModelArn": self.active_model_arn,
"DataAccessRoleArn": self.data_access_role_arn,
"TaskConfig": self.task_config,
"ModelType": self.model_type,
"DataLakeS3Uri": self.data_lake_s3_uri,
"DataSecurityConfig": self.data_security_config,
"ClientRequestToken": self.client_request_token,
}
class ComprehendJob(BaseModel):
"""Generic model for any Comprehend asynchronous job."""
def __init__(
self,
account_id: str,
region_name: str,
job_type: str,
job_name: Optional[str],
input_s3_config: dict[str, Any],
output_s3_config: dict[str, Any],
data_access_role_arn: str,
language_code: Optional[str],
**kwargs: Any,
):
self.job_id = str(uuid.uuid4())
self.job_name = job_name or f"moto-job-{self.job_id}"
self.job_status = "SUBMITTED"
self.submit_time = datetime.now(timezone.utc)
self.end_time = None
self.job_type = job_type
self.input_s3_config = input_s3_config
self.output_s3_config = output_s3_config
self.data_access_role_arn = data_access_role_arn
self.language_code = language_code
self.extra_args = kwargs
job_type_path = "".join(
f"-{c.lower()}" if c.isupper() else c for c in self.job_type
).lstrip("-")
self.job_arn = f"arn:{get_partition(region_name)}:comprehend:{region_name}:{account_id}:{job_type_path}-job/{self.job_id}"
def to_dict(self) -> dict[str, Any]:
base_dict = {
"JobId": self.job_id,
"JobArn": self.job_arn,
"JobName": self.job_name,
"JobStatus": self.job_status,
"SubmitTime": self.submit_time,
"EndTime": self.end_time,
"InputDataConfig": self.input_s3_config,
"OutputDataConfig": self.output_s3_config,
"DataAccessRoleArn": self.data_access_role_arn,
}
if self.language_code:
base_dict["LanguageCode"] = self.language_code
base_dict.update(self.extra_args)
# Add internal job_type for response handler to use
base_dict["job_type"] = self.job_type
return base_dict
def stop(self) -> None:
if self.job_status in ["SUBMITTED", "IN_PROGRESS"]:
self.job_status = "STOP_REQUESTED"
class ComprehendBackend(BaseBackend):
"""Implementation of Comprehend APIs."""
# https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/comprehend/client/detect_key_phrases.html
detect_key_phrases_languages = [
"ar",
"hi",
"ko",
"zh-TW",
"ja",
"zh",
"de",
"pt",
"en",
"it",
"fr",
"es",
]
# https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/comprehend/client/detect_pii_entities.html
detect_pii_entities_languages = ["en"]
def __init__(self, region_name: str, account_id: str):
super().__init__(region_name, account_id)
self.recognizers: dict[str, EntityRecognizer] = {}
self.tagger = TaggingService()
self.endpoints: dict[str, Endpoint] = {}
self.classifiers: dict[str, DocumentClassifier] = {}
self.flywheels: dict[str, Flywheel] = {}
self.resource_policies: dict[str, dict[str, Any]] = {}
self.jobs: dict[str, ComprehendJob] = {}
def list_entity_recognizers(
self, _filter: dict[str, Any]
) -> Iterable[EntityRecognizer]:
"""
Pagination is not yet implemented.
The following filters are not yet implemented: Status, SubmitTimeBefore, SubmitTimeAfter
"""
if "RecognizerName" in _filter:
return [
entity
for entity in self.recognizers.values()
if entity.name == _filter["RecognizerName"]
]
return self.recognizers.values()
def create_entity_recognizer(
self,
recognizer_name: str,
version_name: str,
data_access_role_arn: str,
tags: list[dict[str, str]],
input_data_config: dict[str, Any],
language_code: str,
volume_kms_key_id: str,
vpc_config: dict[str, list[str]],
model_kms_key_id: str,
model_policy: str,
) -> str:
"""
The ClientRequestToken-parameter is not yet implemented
"""
recognizer = EntityRecognizer(
region_name=self.region_name,
account_id=self.account_id,
language_code=language_code,
input_data_config=input_data_config,
data_access_role_arn=data_access_role_arn,
version_name=version_name,
recognizer_name=recognizer_name,
volume_kms_key_id=volume_kms_key_id,
vpc_config=vpc_config,
model_kms_key_id=model_kms_key_id,
model_policy=model_policy,
)
self.recognizers[recognizer.arn] = recognizer
self.tagger.tag_resource(recognizer.arn, tags)
return recognizer.arn
def describe_entity_recognizer(
self, entity_recognizer_arn: str
) -> EntityRecognizer:
if entity_recognizer_arn not in self.recognizers:
raise ResourceNotFound
return self.recognizers[entity_recognizer_arn]
def stop_training_entity_recognizer(self, entity_recognizer_arn: str) -> None:
recognizer = self.describe_entity_recognizer(entity_recognizer_arn)
if recognizer.status == "TRAINING":
recognizer.status = "STOP_REQUESTED"
def list_tags_for_resource(self, resource_arn: str) -> list[dict[str, str]]:
return self.tagger.list_tags_for_resource(resource_arn)["Tags"]
def delete_entity_recognizer(self, entity_recognizer_arn: str) -> None:
self.recognizers.pop(entity_recognizer_arn, None)
def tag_resource(self, resource_arn: str, tags: list[dict[str, str]]) -> None:
self.tagger.tag_resource(resource_arn, tags)
def untag_resource(self, resource_arn: str, tag_keys: list[str]) -> None:
self.tagger.untag_resource_using_names(resource_arn, tag_keys)
def detect_pii_entities(self, text: str, language: str) -> list[dict[str, Any]]:
if language not in self.detect_pii_entities_languages:
raise DetectPIIValidationException(
language, self.detect_pii_entities_languages
)
text_size = len(text)
if text_size > 100000:
raise TextSizeLimitExceededException(text_size)
return CANNED_DETECT_RESPONSE
def detect_key_phrases(self, text: str, language: str) -> list[dict[str, Any]]:
if language not in self.detect_key_phrases_languages:
raise DetectPIIValidationException(
language, self.detect_key_phrases_languages
)
text_size = len(text)
if text_size > 100000:
raise TextSizeLimitExceededException(text_size)
return CANNED_PHRASES_RESPONSE
def detect_sentiment(self, text: str, language: str) -> dict[str, Any]:
if language not in self.detect_key_phrases_languages:
raise DetectPIIValidationException(
language, self.detect_key_phrases_languages
)
text_size = len(text)
if text_size > 5000:
raise TextSizeLimitExceededException(text_size)
return CANNED_SENTIMENT_RESPONSE
def create_document_classifier(
self,
document_classifier_name: str,
version_name: str,
data_access_role_arn: str,
tags: list[dict[str, str]],
input_data_config: dict[str, Any],
output_data_config: dict[str, Any],
client_request_token: str,
language_code: str,
volume_kms_key_id: str,
vpc_config: dict[str, list[str]],
mode: str,
model_kms_key_id: str,
model_policy: str,
) -> str:
classifier = DocumentClassifier(
region_name=self.region_name,
account_id=self.account_id,
language_code=language_code,
version_name=version_name,
input_data_config=input_data_config,
output_data_config=output_data_config,
client_request_token=client_request_token,
data_access_role_arn=data_access_role_arn,
document_classifier_name=document_classifier_name,
volume_kms_key_id=volume_kms_key_id,
mode=mode,
vpc_config=vpc_config,
model_kms_key_id=model_kms_key_id,
model_policy=model_policy,
)
self.classifiers[classifier.arn] = classifier
self.tagger.tag_resource(classifier.arn, tags)
return classifier.arn
def create_endpoint(
self,
endpoint_name: str,
model_arn: str,
desired_inference_units: int,
client_request_token: str,
tags: list[dict[str, str]],
data_access_role_arn: str,
flywheel_arn: str,
) -> tuple[str, str]:
endpoint = Endpoint(
endpoint_name=endpoint_name,
region_name=self.region_name,
account_id=self.account_id,
model_arn=model_arn,
client_request_token=client_request_token,
data_access_role_arn=data_access_role_arn,
flywheel_arn=flywheel_arn,
desired_inference_units=desired_inference_units,
)
self.endpoints[endpoint.arn] = endpoint
self.tagger.tag_resource(endpoint.arn, tags)
return endpoint.arn, model_arn
def create_flywheel(
self,
flywheel_name: str,
active_model_arn: str,
data_access_role_arn: str,
task_config: dict[str, Any],
model_type: str,
data_lake_s3_uri: str,
data_security_config: dict[str, Any],
client_request_token: str,
tags: list[dict[str, str]],
) -> tuple[str, str]:
flywheel = Flywheel(
region_name=self.region_name,
account_id=self.account_id,
flywheel_name=flywheel_name,
active_model_arn=active_model_arn,
data_access_role_arn=data_access_role_arn,
task_config=task_config,
model_type=model_type,
data_lake_s3_uri=data_lake_s3_uri,
data_security_config=data_security_config,
client_request_token=client_request_token,
)
self.flywheels[flywheel.arn] = flywheel
self.tagger.tag_resource(flywheel.arn, tags)
return flywheel.arn, active_model_arn
def describe_document_classifier(
self, document_classifier_arn: str
) -> DocumentClassifier:
if document_classifier_arn not in self.classifiers:
raise ResourceNotFound
return self.classifiers[document_classifier_arn]
def describe_endpoint(self, endpoint_arn: str) -> Endpoint:
if endpoint_arn not in self.endpoints:
raise ResourceNotFound
return self.endpoints[endpoint_arn]
def describe_flywheel(self, flywheel_arn: str) -> Flywheel:
if flywheel_arn not in self.flywheels:
raise ResourceNotFound
return self.flywheels[flywheel_arn]
def delete_document_classifier(self, document_classifier_arn: str) -> None:
self.classifiers.pop(document_classifier_arn, None)
def delete_endpoint(self, endpoint_arn: str) -> None:
self.endpoints.pop(endpoint_arn, None)
def delete_flywheel(self, flywheel_arn: str) -> None:
self.flywheels.pop(flywheel_arn, None)
def list_document_classifiers(
self,
filter: Optional[dict[str, Any]] = None,
next_token: Optional[str] = None,
max_results: Optional[int] = None,
) -> tuple[list[dict[str, Any]], None]:
"""
List document classifiers with optional filtering.
Pagination is not yet implemented.
"""
filter = filter or {}
if "DocumentClassifierName" in filter:
classifiers = [
classifier.to_dict()
for classifier in self.classifiers.values()
if classifier.name == filter["DocumentClassifierName"]
]
elif "Status" in filter:
classifiers = [
classifier.to_dict()
for classifier in self.classifiers.values()
if classifier.status == filter["Status"]
]
else:
classifiers = [
classifier.to_dict() for classifier in self.classifiers.values()
]
return classifiers, None
def list_endpoints(
self,
filter: Optional[dict[str, Any]] = None,
next_token: Optional[str] = None,
max_results: Optional[int] = None,
) -> tuple[list[dict[str, Any]], None]:
"""
List endpoints with optional filtering.
Pagination is not yet implemented.
"""
filter = filter or {}
if "ModelArn" in filter:
endpoints = [
endpoint.to_dict()
for endpoint in self.endpoints.values()
if endpoint.model_arn == filter["ModelArn"]
]
elif "Status" in filter:
endpoints = [
endpoint.to_dict()
for endpoint in self.endpoints.values()
if endpoint.status == filter["Status"]
]
else:
endpoints = [endpoint.to_dict() for endpoint in self.endpoints.values()]
return endpoints, None
def list_flywheels(
self,
filter: Optional[dict[str, Any]] = None,
next_token: Optional[str] = None,
max_results: Optional[int] = None,
) -> tuple[list[dict[str, Any]], None]:
"""
List flywheels with optional filtering.
Pagination is not yet implemented.
"""
# Ensure filter is not None
filter = filter or {}
# Apply filtering based on Status
if "Status" in filter:
flywheels = [
flywheel.to_dict()
for flywheel in self.flywheels.values()
if flywheel.status == filter["Status"]
]
else:
flywheels = [flywheel.to_dict() for flywheel in self.flywheels.values()]
# Return the list of flywheels and a placeholder for next_token
return flywheels, None
def stop_training_document_classifier(self, document_classifier_arn: str) -> None:
if document_classifier_arn not in self.classifiers:
raise ResourceNotFound
classifier = self.describe_document_classifier(document_classifier_arn)
if classifier.status == "TRAINING":
classifier.status = "STOP_REQUESTED"
def start_flywheel_iteration(
self, flywheel_arn: str, client_request_token: str
) -> tuple[str, int]:
if flywheel_arn not in self.flywheels:
raise ResourceNotFound
flywheel_iteration_id = int(random.randint(0, 1000000))
return flywheel_arn, flywheel_iteration_id
def update_endpoint(
self,
endpoint_arn: str,
desired_model_arn: str,
desired_inference_units: str,
desired_data_access_role_arn: str,
flywheel_arn: str,
) -> str:
return desired_model_arn
def put_resource_policy(
self,
resource_arn: str,
resource_policy: str,
policy_revision_id: Optional[str] = None,
) -> str:
"""
The PolicyRevisionId-parameter for conditional updates is not yet implemented.
A check for whether the resource itself exists is also not yet implemented.
"""
revision_id = str(uuid.uuid4())
now = datetime.now(timezone.utc)
creation_time = self.resource_policies.get(resource_arn, {}).get(
"CreationTime", now
)
self.resource_policies[resource_arn] = {
"ResourcePolicy": resource_policy,
"PolicyRevisionId": revision_id,
"CreationTime": creation_time,
"LastModifiedTime": now,
}
return revision_id
def describe_resource_policy(self, resource_arn: str) -> dict[str, Any]:
policy_details = self.resource_policies.get(resource_arn)
if not policy_details:
raise ResourceNotFound
return policy_details
def delete_resource_policy(
self, resource_arn: str, policy_revision_id: Optional[str] = None
) -> None:
"""
The PolicyRevisionId-parameter for conditional deletion is not yet implemented.
"""
if resource_arn not in self.resource_policies:
raise ResourceNotFound
self.resource_policies.pop(resource_arn)
def _start_job(self, job_type: str, **kwargs: Any) -> ComprehendJob:
input_config = kwargs.pop("InputDataConfig")
output_config = kwargs.pop("OutputDataConfig")
role_arn = kwargs.pop("DataAccessRoleArn")
job_name = kwargs.pop("JobName", None)
# LanguageCode is optional for DominantLanguageDetectionJob
language_code = kwargs.pop("LanguageCode", None)
job = ComprehendJob(
account_id=self.account_id,
region_name=self.region_name,
job_type=job_type,
job_name=job_name,
input_s3_config=input_config,
output_s3_config=output_config,
data_access_role_arn=role_arn,
language_code=language_code,
**kwargs,
)
self.jobs[job.job_id] = job
if "Tags" in kwargs:
self.tagger.tag_resource(job.job_arn, kwargs["Tags"])
return job
def _get_job(self, job_id: str) -> ComprehendJob:
if job_id not in self.jobs:
raise ResourceNotFound
return self.jobs[job_id]
def _list_jobs(
self, job_type: str, job_filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
"""Generic method to list and filter jobs."""
# Pagination is not yet implemented
job_filter = job_filter or {}
results = [job for job in self.jobs.values() if job.job_type == job_type]
if "JobName" in job_filter:
results = [job for job in results if job.job_name == job_filter["JobName"]]
if "JobStatus" in job_filter:
results = [
job for job in results if job.job_status == job_filter["JobStatus"]
]
if "SubmitTimeBefore" in job_filter:
before_time = job_filter["SubmitTimeBefore"]
results = [job for job in results if job.submit_time < before_time]
if "SubmitTimeAfter" in job_filter:
after_time = job_filter["SubmitTimeAfter"]
results = [job for job in results if job.submit_time > after_time]
return results
def start_pii_entities_detection_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("PiiEntitiesDetection", **kwargs)
def describe_pii_entities_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def stop_pii_entities_detection_job(self, job_id: str) -> None:
self._get_job(job_id).stop()
def list_pii_entities_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("PiiEntitiesDetection", filter)
def start_key_phrases_detection_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("KeyPhrasesDetection", **kwargs)
def describe_key_phrases_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def stop_key_phrases_detection_job(self, job_id: str) -> None:
self._get_job(job_id).stop()
def list_key_phrases_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("KeyPhrasesDetection", filter)
def start_sentiment_detection_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("SentimentDetection", **kwargs)
def describe_sentiment_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def stop_sentiment_detection_job(self, job_id: str) -> None:
self._get_job(job_id).stop()
def list_sentiment_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("SentimentDetection", filter)
def start_dominant_language_detection_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("DominantLanguageDetection", **kwargs)
def describe_dominant_language_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def stop_dominant_language_detection_job(self, job_id: str) -> None:
self._get_job(job_id).stop()
def list_dominant_language_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("DominantLanguageDetection", filter)
def start_entities_detection_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("EntitiesDetection", **kwargs)
def describe_entities_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def stop_entities_detection_job(self, job_id: str) -> None:
self._get_job(job_id).stop()
def list_entities_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("EntitiesDetection", filter)
def start_topics_detection_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("TopicsDetection", **kwargs)
def describe_topics_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def list_topics_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("TopicsDetection", filter)
def start_document_classification_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("DocumentClassification", **kwargs)
def describe_document_classification_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def list_document_classification_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("DocumentClassification", filter)
def start_events_detection_job(self, **kwargs: Any) -> ComprehendJob:
if "TargetEventTypes" not in kwargs:
raise InvalidRequestException(
"The request is missing the required parameter: TargetEventTypes."
)
return self._start_job("EventsDetection", **kwargs)
def describe_events_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def stop_events_detection_job(self, job_id: str) -> None:
self._get_job(job_id).stop()
def list_events_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("EventsDetection", filter)
def start_targeted_sentiment_detection_job(self, **kwargs: Any) -> ComprehendJob:
return self._start_job("TargetedSentimentDetection", **kwargs)
def describe_targeted_sentiment_detection_job(self, job_id: str) -> ComprehendJob:
return self._get_job(job_id)
def stop_targeted_sentiment_detection_job(self, job_id: str) -> None:
self._get_job(job_id).stop()
def list_targeted_sentiment_detection_jobs(
self, filter: Optional[dict[str, Any]]
) -> list[ComprehendJob]:
return self._list_jobs("TargetedSentimentDetection", filter)
comprehend_backends = BackendDict(ComprehendBackend, "comprehend")
|