File: models.py

package info (click to toggle)
python-moto 5.1.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,520 kB
  • sloc: python: 636,725; javascript: 181; makefile: 39; sh: 3
file content (377 lines) | stat: -rw-r--r-- 13,462 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
"""EMRContainersBackend class with methods for supported APIs."""

import re
from collections.abc import Iterator
from datetime import datetime
from typing import Any, Optional

from moto.core.base_backend import BackendDict, BaseBackend
from moto.core.common_models import BaseModel
from moto.core.utils import iso_8601_datetime_without_milliseconds
from moto.utilities.utils import get_partition

from ..config.exceptions import ValidationException
from .exceptions import ResourceNotFoundException
from .utils import paginated_list, random_cluster_id, random_job_id

VIRTUAL_CLUSTER_ARN_TEMPLATE = "arn:{partition}:emr-containers:{region}:{account_id}:/virtualclusters/{virtual_cluster_id}"

JOB_ARN_TEMPLATE = "arn:{partition}:emr-containers:{region}:{account_id}:/virtualclusters/{virtual_cluster_id}/jobruns/{job_id}"

# Defaults used for creating a Virtual cluster
VIRTUAL_CLUSTER_STATUS = "RUNNING"
JOB_STATUS = "RUNNING"


class FakeCluster(BaseModel):
    def __init__(
        self,
        name: str,
        container_provider: dict[str, Any],
        client_token: str,
        account_id: str,
        region_name: str,
        aws_partition: str,
        tags: Optional[dict[str, str]] = None,
        virtual_cluster_id: Optional[str] = None,
    ):
        self.id = virtual_cluster_id or random_cluster_id()

        self.name = name
        self.client_token = client_token
        self.arn = VIRTUAL_CLUSTER_ARN_TEMPLATE.format(
            partition=aws_partition,
            region=region_name,
            account_id=account_id,
            virtual_cluster_id=self.id,
        )
        self.state = VIRTUAL_CLUSTER_STATUS
        self.container_provider = container_provider
        self.container_provider_id = container_provider["id"]
        self.namespace = container_provider["info"]["eksInfo"]["namespace"]
        self.creation_date = iso_8601_datetime_without_milliseconds(
            datetime.today().replace(hour=0, minute=0, second=0, microsecond=0)
        )
        self.tags = tags

    def __iter__(self) -> Iterator[tuple[str, Any]]:
        yield "id", self.id
        yield "name", self.name
        yield "arn", self.arn
        yield "state", self.state
        yield "containerProvider", self.container_provider
        yield "createdAt", self.creation_date
        yield "tags", self.tags

    def to_dict(self) -> dict[str, Any]:
        # Format for summary https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_DescribeVirtualCluster.html
        # (response syntax section)
        return {
            "id": self.id,
            "name": self.name,
            "arn": self.arn,
            "state": self.state,
            "containerProvider": self.container_provider,
            "createdAt": self.creation_date,
            "tags": self.tags,
        }


class FakeJob(BaseModel):
    def __init__(
        self,
        name: str,
        virtual_cluster_id: str,
        client_token: str,
        execution_role_arn: str,
        release_label: str,
        job_driver: str,
        configuration_overrides: dict[str, Any],
        account_id: str,
        region_name: str,
        aws_partition: str,
        tags: Optional[dict[str, str]],
    ):
        self.id = random_job_id()
        self.name = name
        self.virtual_cluster_id = virtual_cluster_id
        self.arn = JOB_ARN_TEMPLATE.format(
            partition=aws_partition,
            region=region_name,
            account_id=account_id,
            virtual_cluster_id=self.virtual_cluster_id,
            job_id=self.id,
        )
        self.state = JOB_STATUS
        self.client_token = client_token
        self.execution_role_arn = execution_role_arn
        self.release_label = release_label
        self.job_driver = job_driver
        self.configuration_overrides = configuration_overrides
        self.created_at = iso_8601_datetime_without_milliseconds(
            datetime.today().replace(hour=0, minute=0, second=0, microsecond=0)
        )
        self.created_by = None
        self.finished_at: Optional[str] = None
        self.state_details: Optional[str] = None
        self.failure_reason = None
        self.tags = tags

    def __iter__(self) -> Iterator[tuple[str, Any]]:
        yield "id", self.id
        yield "name", self.name
        yield "virtualClusterId", self.virtual_cluster_id
        yield "arn", self.arn
        yield "state", self.state
        yield "clientToken", self.client_token
        yield "executionRoleArn", self.execution_role_arn
        yield "releaseLabel", self.release_label
        yield "configurationOverrides", self.release_label
        yield "jobDriver", self.job_driver
        yield "createdAt", self.created_at
        yield "createdBy", self.created_by
        yield "finishedAt", self.finished_at
        yield "stateDetails", self.state_details
        yield "failureReason", self.failure_reason
        yield "tags", self.tags

    def to_dict(self) -> dict[str, Any]:
        # Format for summary https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_DescribeJobRun.html
        # (response syntax section)
        return {
            "id": self.id,
            "name": self.name,
            "virtualClusterId": self.virtual_cluster_id,
            "arn": self.arn,
            "state": self.state,
            "clientToken": self.client_token,
            "executionRoleArn": self.execution_role_arn,
            "releaseLabel": self.release_label,
            "configurationOverrides": self.configuration_overrides,
            "jobDriver": self.job_driver,
            "createdAt": self.created_at,
            "createdBy": self.created_by,
            "finishedAt": self.finished_at,
            "stateDetails": self.state_details,
            "failureReason": self.failure_reason,
            "tags": self.tags,
        }


class EMRContainersBackend(BaseBackend):
    """Implementation of EMRContainers APIs."""

    def __init__(self, region_name: str, account_id: str):
        super().__init__(region_name, account_id)
        self.virtual_clusters: dict[str, FakeCluster] = {}
        self.virtual_cluster_count = 0
        self.jobs: dict[str, FakeJob] = {}
        self.job_count = 0
        self.partition = get_partition(region_name)

    def create_virtual_cluster(
        self,
        name: str,
        container_provider: dict[str, Any],
        client_token: str,
        tags: Optional[dict[str, str]] = None,
    ) -> FakeCluster:
        occupied_namespaces = [
            virtual_cluster.namespace
            for virtual_cluster in self.virtual_clusters.values()
        ]

        if container_provider["info"]["eksInfo"]["namespace"] in occupied_namespaces:
            raise ValidationException(
                "A virtual cluster already exists in the given namespace"
            )

        virtual_cluster = FakeCluster(
            name=name,
            container_provider=container_provider,
            client_token=client_token,
            tags=tags,
            account_id=self.account_id,
            region_name=self.region_name,
            aws_partition=self.partition,
        )

        self.virtual_clusters[virtual_cluster.id] = virtual_cluster
        self.virtual_cluster_count += 1
        return virtual_cluster

    def delete_virtual_cluster(self, cluster_id: str) -> FakeCluster:
        if cluster_id not in self.virtual_clusters:
            raise ValidationException("VirtualCluster does not exist")

        self.virtual_clusters[cluster_id].state = "TERMINATED"
        return self.virtual_clusters[cluster_id]

    def describe_virtual_cluster(self, cluster_id: str) -> dict[str, Any]:
        if cluster_id not in self.virtual_clusters:
            raise ValidationException(f"Virtual cluster {cluster_id} doesn't exist.")

        return self.virtual_clusters[cluster_id].to_dict()

    def list_virtual_clusters(
        self,
        container_provider_id: str,
        container_provider_type: str,
        created_after: str,
        created_before: str,
        states: Optional[list[str]],
        max_results: int,
        next_token: Optional[str],
    ) -> tuple[list[dict[str, Any]], Optional[str]]:
        virtual_clusters = [
            virtual_cluster.to_dict()
            for virtual_cluster in self.virtual_clusters.values()
        ]

        if container_provider_id:
            virtual_clusters = [
                virtual_cluster
                for virtual_cluster in virtual_clusters
                if virtual_cluster["containerProvider"]["id"] == container_provider_id
            ]

        if container_provider_type:
            virtual_clusters = [
                virtual_cluster
                for virtual_cluster in virtual_clusters
                if virtual_cluster["containerProvider"]["type"]
                == container_provider_type
            ]

        if created_after:
            virtual_clusters = [
                virtual_cluster
                for virtual_cluster in virtual_clusters
                if virtual_cluster["createdAt"] >= created_after
            ]

        if created_before:
            virtual_clusters = [
                virtual_cluster
                for virtual_cluster in virtual_clusters
                if virtual_cluster["createdAt"] <= created_before
            ]

        if states:
            virtual_clusters = [
                virtual_cluster
                for virtual_cluster in virtual_clusters
                if virtual_cluster["state"] in states
            ]
        sort_key = "name"
        return paginated_list(virtual_clusters, sort_key, max_results, next_token)

    def start_job_run(
        self,
        name: str,
        virtual_cluster_id: str,
        client_token: str,
        execution_role_arn: str,
        release_label: str,
        job_driver: str,
        configuration_overrides: dict[str, Any],
        tags: dict[str, str],
    ) -> FakeJob:
        if virtual_cluster_id not in self.virtual_clusters.keys():
            raise ResourceNotFoundException(
                f"Virtual cluster {virtual_cluster_id} doesn't exist."
            )

        if not re.match(
            r"emr-[0-9]{1}\.[0-9]{1,2}\.0-(latest|[0-9]{8})", release_label
        ):
            raise ResourceNotFoundException(f"Release {release_label} doesn't exist.")

        job = FakeJob(
            name=name,
            virtual_cluster_id=virtual_cluster_id,
            client_token=client_token,
            execution_role_arn=execution_role_arn,
            release_label=release_label,
            job_driver=job_driver,
            configuration_overrides=configuration_overrides,
            tags=tags,
            account_id=self.account_id,
            region_name=self.region_name,
            aws_partition=self.partition,
        )

        self.jobs[job.id] = job
        self.job_count += 1
        return job

    def cancel_job_run(self, job_id: str, virtual_cluster_id: str) -> FakeJob:
        if not re.match(r"[a-z,A-Z,0-9]{19}", job_id):
            raise ValidationException("Invalid job run short id")

        if job_id not in self.jobs.keys():
            raise ResourceNotFoundException(f"Job run {job_id} doesn't exist.")

        if virtual_cluster_id != self.jobs[job_id].virtual_cluster_id:
            raise ResourceNotFoundException(f"Job run {job_id} doesn't exist.")

        if self.jobs[job_id].state in [
            "FAILED",
            "CANCELLED",
            "CANCEL_PENDING",
            "COMPLETED",
        ]:
            raise ValidationException(f"Job run {job_id} is not in a cancellable state")

        job = self.jobs[job_id]
        job.state = "CANCELLED"
        job.finished_at = iso_8601_datetime_without_milliseconds(
            datetime.today().replace(hour=0, minute=1, second=0, microsecond=0)
        )
        job.state_details = "JobRun CANCELLED successfully."

        return job

    def list_job_runs(
        self,
        virtual_cluster_id: str,
        created_before: str,
        created_after: str,
        name: str,
        states: Optional[list[str]],
        max_results: int,
        next_token: Optional[str],
    ) -> tuple[list[dict[str, Any]], Optional[str]]:
        jobs = [job.to_dict() for job in self.jobs.values()]

        jobs = [job for job in jobs if job["virtualClusterId"] == virtual_cluster_id]

        if created_after:
            jobs = [job for job in jobs if job["createdAt"] >= created_after]

        if created_before:
            jobs = [job for job in jobs if job["createdAt"] <= created_before]

        if states:
            jobs = [job for job in jobs if job["state"] in states]

        if name:
            jobs = [job for job in jobs if job["name"] in name]

        sort_key = "id"
        return paginated_list(jobs, sort_key, max_results, next_token)

    def describe_job_run(self, job_id: str, virtual_cluster_id: str) -> dict[str, Any]:
        if not re.match(r"[a-z,A-Z,0-9]{19}", job_id):
            raise ValidationException("Invalid job run short id")

        if job_id not in self.jobs.keys():
            raise ResourceNotFoundException(f"Job run {job_id} doesn't exist.")

        if virtual_cluster_id != self.jobs[job_id].virtual_cluster_id:
            raise ResourceNotFoundException(f"Job run {job_id} doesn't exist.")

        return self.jobs[job_id].to_dict()


emrcontainers_backends = BackendDict(EMRContainersBackend, "emr-containers")