1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
import base64
import hashlib
import hmac
import io
import os
import struct
from abc import ABCMeta, abstractmethod
from collections import namedtuple
from enum import Enum
from typing import Any
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
from cryptography.hazmat.primitives.asymmetric import ec, padding, rsa
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from moto.moto_api._internal import mock_random
from .exceptions import (
AccessDeniedException,
InvalidCiphertextException,
NotFoundException,
ValidationException,
)
MASTER_KEY_LEN = 32
KEY_ID_LEN = 36
IV_LEN = 12
TAG_LEN = 16
HEADER_LEN = KEY_ID_LEN + IV_LEN + TAG_LEN
# NOTE: This is just a simple binary format. It is not what KMS actually does.
CIPHERTEXT_HEADER_FORMAT = f">{KEY_ID_LEN}s{IV_LEN}s{TAG_LEN}s"
Ciphertext = namedtuple("Ciphertext", ("key_id", "iv", "ciphertext", "tag"))
RESERVED_ALIASE_TARGET_KEY_IDS = {
# NOTE: These would technically differ across account, but in that they are
# out of customer control, testing that they are different would be redundant.
"alias/aws/acm": "4f58743d-e279-4214-9270-8cc28277958d",
"alias/aws/dynamodb": "7e6aa0ea-15a4-4e72-8b32-58e46e776888",
"alias/aws/ebs": "7adeb491-68c9-4a5b-86ec-a86ce5364094",
"alias/aws/elasticfilesystem": "0ef0f111-cdc8-4dda-b0bc-bf625bd5f154",
"alias/aws/es": "3c7c1880-c353-4cea-9866-d8bc12f05573",
"alias/aws/glue": "90fd783f-e582-4cc2-a207-672ee67f8d58",
"alias/aws/kinesisvideo": "7fd4bff3-6eb7-4283-8f11-a7e0a793a181",
"alias/aws/lambda": "ff9c4f27-2f29-4d9b-bf38-02f88b52a70c",
"alias/aws/rds": "f5f30938-abed-41a2-a0f6-5482d02a2489",
"alias/aws/redshift": "dcdae9aa-593a-4e0b-9153-37325591901f",
"alias/aws/s3": "8c3faf07-f43c-4d11-abdb-9183079214c7",
"alias/aws/secretsmanager": "fee5173a-3972-428e-ae73-cd4c2a371222",
"alias/aws/ssm": "cb3f6250-5078-48c0-a75f-0290bf47694e",
"alias/aws/xray": "e9b758eb-6230-4744-93d1-ad3b7d71f2f6",
}
RESERVED_ALIASES = list(RESERVED_ALIASE_TARGET_KEY_IDS.keys())
class KeySpec(str, Enum):
# Asymmetric key specs
RSA_2048 = "RSA_2048"
RSA_3072 = "RSA_3072"
RSA_4096 = "RSA_4096"
ECC_NIST_P256 = "ECC_NIST_P256"
ECC_SECG_P256K1 = "ECC_SECG_P256K1"
ECC_NIST_P384 = "ECC_NIST_P384"
ECC_NIST_P521 = "ECC_NIST_P521"
SM2 = "SM2" # China Regions only
# Symmetric key specs
SYMMETRIC_DEFAULT = "SYMMETRIC_DEFAULT"
HMAC_224 = "HMAC_224"
HMAC_256 = "HMAC_256"
HMAC_284 = "HMAC_384"
HMAC_512 = "HMAC_512"
@classmethod
def key_specs(self) -> list[str]:
return sorted([item.value for item in KeySpec])
@classmethod
def rsa_key_specs(self) -> list[str]:
return [spec for spec in self.key_specs() if spec.startswith("RSA")]
@classmethod
def ecc_key_specs(self) -> list[str]:
return [spec for spec in self.key_specs() if spec.startswith("ECC")]
@classmethod
def hmac_key_specs(self) -> list[str]:
return [spec for spec in self.key_specs() if spec.startswith("HMAC")]
class SigningAlgorithm(str, Enum):
# sigingin algorithms for RSA key spec
RSASSA_PSS_SHA_256 = "RSASSA_PSS_SHA_256"
RSASSA_PSS_SHA_384 = "RSASSA_PSS_SHA_384"
RSASSA_PSS_SHA_512 = "RSASSA_PSS_SHA_512"
RSASSA_PKCS1_V1_5_SHA_256 = "RSASSA_PKCS1_V1_5_SHA_256"
RSASSA_PKCS1_V1_5_SHA_384 = "RSASSA_PKCS1_V1_5_SHA_384"
RSASSA_PKCS1_V1_5_SHA_512 = "RSASSA_PKCS1_V1_5_SHA_512"
# sigining algorithms for ECC_NIST_P256, P256K1 spec
ECDSA_SHA_256 = "ECDSA_SHA_256"
# siginging algorithm for ECC_NIST_P384
ECDSA_SHA_384 = "ECDSA_SHA_384"
# sigining algorithm for ECC_NIST_P512
ECDSA_SHA_512 = "ECDSA_SHA_512"
# sigining algorithm for SM2
SM2DSA = "SM2DSA"
@classmethod
def signing_algorithms(self) -> list[str]:
return sorted([item.value for item in SigningAlgorithm])
@classmethod
def rsa_signing_algorithms(self) -> list[str]:
return [algo for algo in self.signing_algorithms() if algo.startswith("RSASSA")]
@classmethod
def ecc_signing_algorithms(self) -> list[str]:
return [algo for algo in self.signing_algorithms() if algo.startswith("ECDSA")]
def generate_key_id(multi_region: bool = False) -> str:
key = str(mock_random.uuid4())
# https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
# "Notice that multi-Region keys have a distinctive key ID that begins with mrk-. You can use the mrk- prefix to
# identify MRKs programmatically."
if multi_region:
key = "mrk-" + key
return key
def generate_data_key(number_of_bytes: int) -> bytes:
"""Generate a data key."""
return os.urandom(number_of_bytes)
def generate_master_key() -> bytes:
"""Generate a master key."""
return generate_data_key(MASTER_KEY_LEN)
class AbstractPrivateKey(metaclass=ABCMeta):
@abstractmethod
def sign(self, message: bytes, signing_algorithm: str) -> bytes:
raise NotImplementedError
@abstractmethod
def verify(self, message: bytes, signature: bytes, signing_algorithm: str) -> bool:
raise NotImplementedError
@abstractmethod
def public_key(self) -> bytes:
raise NotImplementedError
def validate_signing_algorithm(
target_algorithm: str, valid_algorithms: list[str]
) -> None:
if target_algorithm not in valid_algorithms:
raise ValidationException(
"1 validation error detected: Value at 'signing_algorithm' failed"
f"to satisfy constraint: Member must satisfy enum value set: {valid_algorithms}"
)
def validate_key_spec(target_key_spec: str, valid_key_specs: list[str]) -> None:
if target_key_spec not in valid_key_specs:
raise ValidationException(
"1 validation error detected: Value at 'key_spec' failed "
f"to satisfy constraint: Member must satisfy enum value set: {valid_key_specs}"
)
class RSAPrivateKey(AbstractPrivateKey):
# See https://docs.aws.amazon.com/kms/latest/cryptographic-details/crypto-primitives.html
__supported_key_sizes = [2048, 3072, 4096]
def __init__(self, key_size: int):
if key_size not in self.__supported_key_sizes:
raise ValidationException(
"1 validation error detected: Value at 'key_size' failed "
f"to satisfy constraint: Member must satisfy enum value set: {self.__supported_key_sizes}"
)
self.key_size = key_size
self.private_key = rsa.generate_private_key(
public_exponent=65537, key_size=self.key_size
)
def __padding_and_hash_algorithm(
self, signing_algorithm: str
) -> tuple[AsymmetricPadding, hashes.HashAlgorithm]:
if signing_algorithm == SigningAlgorithm.RSASSA_PSS_SHA_256:
pad = padding.PSS(
mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH
) # type: AsymmetricPadding
algorithm = hashes.SHA256() # type: Any
elif signing_algorithm == SigningAlgorithm.RSASSA_PSS_SHA_384:
pad = padding.PSS(
mgf=padding.MGF1(hashes.SHA384()), salt_length=padding.PSS.MAX_LENGTH
)
algorithm = hashes.SHA384()
elif signing_algorithm == SigningAlgorithm.RSASSA_PSS_SHA_512:
pad = padding.PSS(
mgf=padding.MGF1(hashes.SHA512()), salt_length=padding.PSS.MAX_LENGTH
)
algorithm = hashes.SHA512()
elif signing_algorithm == SigningAlgorithm.RSASSA_PKCS1_V1_5_SHA_256:
pad = padding.PKCS1v15()
algorithm = hashes.SHA256()
elif signing_algorithm == SigningAlgorithm.RSASSA_PKCS1_V1_5_SHA_384:
pad = padding.PKCS1v15()
algorithm = hashes.SHA384()
else:
pad = padding.PKCS1v15()
algorithm = hashes.SHA512()
return pad, algorithm
def sign(self, message: bytes, signing_algorithm: str) -> bytes:
validate_signing_algorithm(
signing_algorithm, SigningAlgorithm.rsa_signing_algorithms()
)
pad, hash_algorithm = self.__padding_and_hash_algorithm(signing_algorithm)
return self.private_key.sign(message, pad, hash_algorithm)
def verify(self, message: bytes, signature: bytes, signing_algorithm: str) -> bool:
validate_signing_algorithm(
signing_algorithm, SigningAlgorithm.rsa_signing_algorithms()
)
pad, hash_algorithm = self.__padding_and_hash_algorithm(signing_algorithm)
public_key = self.private_key.public_key()
try:
public_key.verify(signature, message, pad, hash_algorithm)
return True
except InvalidSignature:
return False
def public_key(self) -> bytes:
return self.private_key.public_key().public_bytes(
encoding=serialization.Encoding.DER,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
class ECDSAPrivateKey(AbstractPrivateKey):
def __init__(self, key_spec: str):
validate_key_spec(key_spec, KeySpec.ecc_key_specs())
if key_spec == KeySpec.ECC_NIST_P256:
curve = ec.SECP256R1() # type: ec.EllipticCurve
valid_signing_algorithms = ["ECDSA_SHA_256"]
elif key_spec == KeySpec.ECC_SECG_P256K1:
curve = ec.SECP256K1()
valid_signing_algorithms = ["ECDSA_SHA_256"]
elif key_spec == KeySpec.ECC_NIST_P384:
curve = ec.SECP384R1()
valid_signing_algorithms = ["ECDSA_SHA_384"]
else:
curve = ec.SECP521R1()
valid_signing_algorithms = ["ECDSA_SHA_512"]
self.private_key = ec.generate_private_key(curve)
self.valid_signing_algorithms = valid_signing_algorithms
def __hash_algorithm(self, signing_algorithm: str) -> hashes.HashAlgorithm:
if signing_algorithm == SigningAlgorithm.ECDSA_SHA_256:
algorithm = hashes.SHA256() # type: Any
elif signing_algorithm == SigningAlgorithm.ECDSA_SHA_384:
algorithm = hashes.SHA384()
else:
algorithm = hashes.SHA512()
return algorithm
def sign(self, message: bytes, signing_algorithm: str) -> bytes:
validate_signing_algorithm(signing_algorithm, self.valid_signing_algorithms)
hash_algorithm = self.__hash_algorithm(signing_algorithm)
return self.private_key.sign(message, ec.ECDSA(hash_algorithm))
def verify(self, message: bytes, signature: bytes, signing_algorithm: str) -> bool:
validate_signing_algorithm(signing_algorithm, self.valid_signing_algorithms)
hash_algorithm = self.__hash_algorithm(signing_algorithm)
public_key = self.private_key.public_key()
try:
public_key.verify(signature, message, ec.ECDSA(hash_algorithm))
return True
except InvalidSignature:
return False
def public_key(self) -> bytes:
return self.private_key.public_key().public_bytes(
encoding=serialization.Encoding.DER,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
def generate_private_key(key_spec: str) -> AbstractPrivateKey:
"""Generate a private key to be used on asymmetric sign/verify."""
if key_spec == KeySpec.RSA_2048:
return RSAPrivateKey(key_size=2048)
elif key_spec == KeySpec.RSA_3072:
return RSAPrivateKey(key_size=3072)
elif key_spec == KeySpec.RSA_4096:
return RSAPrivateKey(key_size=4096)
elif key_spec in KeySpec.ecc_key_specs():
return ECDSAPrivateKey(key_spec)
else:
return RSAPrivateKey(key_size=2048)
def _serialize_ciphertext_blob(ciphertext: Ciphertext) -> bytes:
"""Serialize Ciphertext object into a ciphertext blob.
NOTE: This is just a simple binary format. It is not what KMS actually does.
"""
header = struct.pack(
CIPHERTEXT_HEADER_FORMAT,
ciphertext.key_id.encode("utf-8"),
ciphertext.iv,
ciphertext.tag,
)
return header + ciphertext.ciphertext
def _deserialize_ciphertext_blob(ciphertext_blob: bytes) -> Ciphertext:
"""Deserialize ciphertext blob into a Ciphertext object.
NOTE: This is just a simple binary format. It is not what KMS actually does.
"""
header = ciphertext_blob[:HEADER_LEN]
ciphertext = ciphertext_blob[HEADER_LEN:]
key_id, iv, tag = struct.unpack(CIPHERTEXT_HEADER_FORMAT, header)
return Ciphertext(
key_id=key_id.decode("utf-8"), iv=iv, ciphertext=ciphertext, tag=tag
)
def _serialize_encryption_context(encryption_context: dict[str, str]) -> bytes:
"""Serialize encryption context for use a AAD.
NOTE: This is not necessarily what KMS does, but it retains the same properties.
"""
aad = io.BytesIO()
for key, value in sorted(encryption_context.items(), key=lambda x: x[0]):
aad.write(key.encode("utf-8"))
aad.write(value.encode("utf-8"))
return aad.getvalue()
def encrypt(
master_keys: dict[str, Any],
key_id: str,
plaintext: bytes,
encryption_context: dict[str, str],
) -> bytes:
"""Encrypt data using a master key material.
NOTE: This is not necessarily what KMS does, but it retains the same properties.
NOTE: This function is NOT compatible with KMS APIs.
:param dict master_keys: Mapping of a KmsBackend's known master keys
:param str key_id: Key ID of moto master key
:param bytes plaintext: Plaintext data to encrypt
:param dict[str, str] encryption_context: KMS-style encryption context
:returns: Moto-structured ciphertext blob encrypted under a moto master key in master_keys
:rtype: bytes
"""
try:
key = master_keys[key_id]
except KeyError:
is_alias = key_id.startswith("alias/") or ":alias/" in key_id
id_type = "Alias" if is_alias else "keyId"
raise NotFoundException(f"{id_type} {key_id} is not found.")
if plaintext == b"":
raise ValidationException(
"1 validation error detected: Value at 'plaintext' failed to satisfy constraint: Member must have length greater than or equal to 1"
)
if len(plaintext) > 4096:
raise ValidationException(
"1 validation error detected: Value at 'plaintext' failed to satisfy constraint: Member must have length less than or equal to 4096"
)
iv = os.urandom(IV_LEN)
aad = _serialize_encryption_context(encryption_context=encryption_context)
encryptor = Cipher(
algorithms.AES(key.key_material), modes.GCM(iv), backend=default_backend()
).encryptor()
encryptor.authenticate_additional_data(aad)
ciphertext = encryptor.update(plaintext) + encryptor.finalize()
return _serialize_ciphertext_blob(
ciphertext=Ciphertext(
key_id=key_id, iv=iv, ciphertext=ciphertext, tag=encryptor.tag
)
)
def decrypt(
master_keys: dict[str, Any],
ciphertext_blob: bytes,
encryption_context: dict[str, str],
) -> tuple[bytes, str]:
"""Decrypt a ciphertext blob using a master key material.
NOTE: This is not necessarily what KMS does, but it retains the same properties.
NOTE: This function is NOT compatible with KMS APIs.
:param dict master_keys: Mapping of a KmsBackend's known master keys
:param bytes ciphertext_blob: moto-structured ciphertext blob encrypted under a moto master key in master_keys
:param dict[str, str] encryption_context: KMS-style encryption context
:returns: plaintext bytes and moto key ID
:rtype: bytes and str
"""
try:
ciphertext = _deserialize_ciphertext_blob(ciphertext_blob=ciphertext_blob)
except Exception:
raise InvalidCiphertextException()
aad = _serialize_encryption_context(encryption_context=encryption_context)
try:
key = master_keys[ciphertext.key_id]
except KeyError:
raise AccessDeniedException(
"The ciphertext refers to a customer master key that does not exist, "
"does not exist in this region, or you are not allowed to access."
)
try:
decryptor = Cipher(
algorithms.AES(key.key_material),
modes.GCM(ciphertext.iv, ciphertext.tag),
backend=default_backend(),
).decryptor()
decryptor.authenticate_additional_data(aad)
plaintext = decryptor.update(ciphertext.ciphertext) + decryptor.finalize()
except Exception:
raise InvalidCiphertextException()
return plaintext, ciphertext.key_id
def generate_hmac(
key: bytes,
message: bytes,
mac_algorithm: str,
) -> str:
"""
Returns a base64 encoded HMAC
"""
algos = {
"HMAC_SHA_224": hashlib.sha224,
"HMAC_SHA_256": hashlib.sha256,
"HMAC_SHA_384": hashlib.sha384,
"HMAC_SHA_512": hashlib.sha512,
}
hmac_val = hmac.new(
key=key,
msg=message,
digestmod=algos[mac_algorithm],
)
return base64.b64encode(hmac_val.digest()).decode("utf-8")
|