1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
"""S3VectorsBackend class with methods for supported APIs."""
from collections.abc import Iterable
from typing import Any, Literal, Optional, TypedDict
from moto.core.base_backend import BackendDict, BaseBackend
from moto.core.common_models import BaseModel
from moto.utilities.arns import parse_arn
from moto.utilities.utils import PARTITION_NAMES
from .exceptions import (
IndexNotFound,
VectorBucketAlreadyExists,
VectorBucketNotEmpty,
VectorBucketNotFound,
VectorBucketPolicyNotFound,
VectorWrongDimension,
)
from .utils import create_vector_bucket_arn
class VectorData(TypedDict):
float32: list[float]
class VectorType(TypedDict, total=False):
key: str
data: VectorData
metadata: Any
class Vector(BaseModel):
def __init__(self, key: str, data: VectorData, metadata: Any):
self.key = key
self.data = data
self.metadata = metadata
def to_dict(self, return_data: bool, return_metadata: bool) -> VectorType:
return (
{"key": self.key} # type: ignore[return-value]
| ({"data": self.data} if return_data else {})
| ({"metadata": self.metadata} if return_metadata else {})
)
@staticmethod
def from_dict(dct: VectorType) -> "Vector":
return Vector(
key=dct["key"], data=dct["data"], metadata=dct.get("metadata", {})
)
class Index(BaseModel):
def __init__(
self,
bucket: "VectorBucket",
name: str,
dimension: int,
data_type: Literal["float32"],
distance_metric: str,
):
self.vectorBucketName = bucket.vector_bucket_name
self.index_name = name
self.index_arn = f"{bucket.vector_bucket_arn}/index/{name}"
self.dimension = dimension
self.data_type = data_type
self.distance_metric = distance_metric
self._bucket = bucket
self.vectors: dict[str, Vector] = {}
class VectorBucket(BaseModel):
def __init__(
self,
arn: str,
name: str,
encryption_configuration: dict[str, str],
):
self.vector_bucket_name = name
self.vector_bucket_arn = arn
self.encryption_configuration = encryption_configuration or {
"sseType": "AES256"
}
self.indexes: dict[str, Index] = {}
self.policy: Optional[str] = None
class S3VectorsBackend(BaseBackend):
"""Implementation of S3Vectors APIs."""
def __init__(self, region_name: str, account_id: str):
super().__init__(region_name, account_id)
self.vector_buckets: dict[str, VectorBucket] = {}
def create_vector_bucket(
self,
region: str,
vector_bucket_name: str,
encryption_configuration: dict[str, str],
) -> None:
vector_bucket_arn = create_vector_bucket_arn(
self.account_id, region, name=vector_bucket_name
)
if vector_bucket_arn in self.vector_buckets:
raise VectorBucketAlreadyExists
vector_bucket = VectorBucket(
arn=vector_bucket_arn,
name=vector_bucket_name,
encryption_configuration=encryption_configuration,
)
self.vector_buckets[vector_bucket.vector_bucket_arn] = vector_bucket
def get_vector_bucket(
self,
vector_bucket_name: Optional[str] = None,
vector_bucket_arn: Optional[str] = None,
) -> VectorBucket:
if vector_bucket_name:
for vector_bucket in self.vector_buckets.values():
if vector_bucket.vector_bucket_name == vector_bucket_name:
return vector_bucket
if vector_bucket_arn and (bucket := self.vector_buckets.get(vector_bucket_arn)):
return bucket
raise VectorBucketNotFound
def delete_vector_bucket(self, vector_bucket_name: str) -> None:
if vector_bucket_name:
bucket = self.get_vector_bucket(vector_bucket_name=vector_bucket_name)
if bucket.indexes:
raise VectorBucketNotEmpty
self.vector_buckets.pop(bucket.vector_bucket_arn, None)
def list_vector_buckets(self, prefix: Optional[str]) -> list[VectorBucket]:
return [
bucket
for bucket in self.vector_buckets.values()
if not prefix or bucket.vector_bucket_name.startswith(prefix)
]
def create_index(
self,
vector_bucket_name: str,
vector_bucket_arn: str,
index_name: str,
data_type: Literal["float32"],
dimension: int,
distance_metric: str,
) -> None:
bucket = self.get_vector_bucket(
vector_bucket_name=vector_bucket_name, vector_bucket_arn=vector_bucket_arn
)
index = Index(
bucket=bucket,
name=index_name,
data_type=data_type,
dimension=dimension,
distance_metric=distance_metric,
)
bucket.indexes[index.index_arn] = index
def delete_index(
self, vector_bucket_name: str, index_name: str, index_arn: str
) -> None:
index = self.get_index(vector_bucket_name, index_name, index_arn)
index._bucket.indexes.pop(index.index_arn)
def get_index(
self, vector_bucket_name: str, index_name: str, index_arn: str
) -> Index:
if index_arn:
vector_bucket_name, _, index_name = parse_arn(index_arn).resource_id.split(
"/"
)
try:
bucket = self.get_vector_bucket(
vector_bucket_name=vector_bucket_name, vector_bucket_arn=None
)
for index in bucket.indexes.values():
if index.index_name == index_name:
return index
except VectorBucketNotFound:
pass
raise IndexNotFound
def list_indexes(
self, vector_bucket_name: str, vector_bucket_arn: str
) -> list[Index]:
"""Pagination is not yet implemented. The prefix-parameter is also not yet implemented."""
bucket = self.get_vector_bucket(
vector_bucket_name, vector_bucket_arn=vector_bucket_arn
)
return list(bucket.indexes.values())
def delete_vector_bucket_policy(
self, vector_bucket_name: str, vector_bucket_arn: str
) -> None:
bucket = self.get_vector_bucket(
vector_bucket_name, vector_bucket_arn=vector_bucket_arn
)
bucket.policy = None
def get_vector_bucket_policy(
self, vector_bucket_name: str, vector_bucket_arn: str
) -> str:
bucket = self.get_vector_bucket(
vector_bucket_name, vector_bucket_arn=vector_bucket_arn
)
if not bucket.policy:
raise VectorBucketPolicyNotFound
return bucket.policy
def put_vector_bucket_policy(
self, vector_bucket_name: str, vector_bucket_arn: str, policy: str
) -> None:
bucket = self.get_vector_bucket(
vector_bucket_name, vector_bucket_arn=vector_bucket_arn
)
bucket.policy = policy
def put_vectors(
self,
vector_bucket_name: str,
index_name: str,
index_arn: str,
vectors: list[VectorType],
) -> None:
index = self.get_index(
vector_bucket_name, index_name=index_name, index_arn=index_arn
)
for vector in vectors:
provided = len(vector["data"][index.data_type]) # type: ignore[literal-required]
if provided != index.dimension:
raise VectorWrongDimension(
key=vector["key"], actual=index.dimension, provided=provided
)
for vector in vectors:
index.vectors[vector["key"]] = Vector.from_dict(vector)
def get_vectors(
self, vector_bucket_name: str, index_name: str, index_arn: str, keys: list[str]
) -> list[Vector]:
index = self.get_index(
vector_bucket_name, index_name=index_name, index_arn=index_arn
)
return [index.vectors[name] for name in index.vectors if name in keys]
def list_vectors(
self, vector_bucket_name: str, index_name: str, index_arn: str
) -> Iterable[Vector]:
"""
Pagination is not yet implemented
Segmentation is not yet implemented
"""
index = self.get_index(
vector_bucket_name, index_name=index_name, index_arn=index_arn
)
return index.vectors.values()
def delete_vectors(
self, vector_bucket_name: str, index_name: str, index_arn: str, keys: list[str]
) -> None:
index = self.get_index(
vector_bucket_name, index_name=index_name, index_arn=index_arn
)
for key in keys:
index.vectors.pop(key, None)
s3vectors_backends = BackendDict(
S3VectorsBackend,
"s3vectors",
use_boto3_regions=False,
additional_regions=PARTITION_NAMES,
)
|