File: models.py

package info (click to toggle)
python-moto 5.1.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,520 kB
  • sloc: python: 636,725; javascript: 181; makefile: 39; sh: 3
file content (54 lines) | stat: -rw-r--r-- 2,294 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""SageMakerMetricsBackend class with methods for supported APIs."""

from datetime import datetime
from typing import Union, cast

from moto.core.base_backend import BackendDict, BaseBackend
from moto.sagemaker import sagemaker_backends
from moto.sagemaker.models import METRIC_STEP_TYPE

RESPONSE_TYPE = dict[str, list[dict[str, Union[str, int]]]]


class SageMakerMetricsBackend(BaseBackend):
    """Implementation of SageMakerMetrics APIs."""

    def __init__(self, region_name: str, account_id: str) -> None:
        super().__init__(region_name, account_id)
        self.sagemaker_backend = sagemaker_backends[account_id][region_name]

    def batch_put_metrics(
        self,
        trial_component_name: str,
        metric_data: list[dict[str, Union[str, int, float, datetime]]],
    ) -> RESPONSE_TYPE:
        return_response: RESPONSE_TYPE = {"Errors": []}

        if trial_component_name not in self.sagemaker_backend.trial_components:
            return_response["Errors"].append(
                {"Code": "VALIDATION_ERROR", "MetricIndex": 0}
            )
            return return_response

        trial_component = self.sagemaker_backend.trial_components[trial_component_name]
        for metric in metric_data:
            metric_step: int = cast(int, metric["Step"])
            metric_name: str = cast(str, metric["MetricName"])
            if metric_name not in trial_component.metrics:
                metric_timestamp: int = cast(int, metric["Timestamp"])
                values_dict: dict[int, dict[str, Union[str, int, float, datetime]]] = {}
                new_metric: dict[str, Union[str, int, METRIC_STEP_TYPE]] = {
                    "MetricName": metric_name,
                    "Timestamp": metric_timestamp,
                    "Values": values_dict,
                }
                trial_component.metrics[metric_name] = new_metric
            new_step: METRIC_STEP_TYPE = {metric_step: metric}
            trial_component_metric_values: METRIC_STEP_TYPE = cast(
                METRIC_STEP_TYPE, trial_component.metrics[metric_name]["Values"]
            )
            trial_component_metric_values.update(new_step)  # type ignore
        return return_response


sagemakermetrics_backends = BackendDict(SageMakerMetricsBackend, "sagemaker-metrics")