File: state_map.py

package info (click to toggle)
python-moto 5.1.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,520 kB
  • sloc: python: 636,725; javascript: 181; makefile: 39; sh: 3
file content (367 lines) | stat: -rw-r--r-- 16,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import copy
from typing import Optional

from moto.stepfunctions.parser.api import (
    EvaluationFailedEventDetails,
    HistoryEventType,
    MapStateStartedEventDetails,
)
from moto.stepfunctions.parser.asl.component.common.catch.catch_decl import CatchDecl
from moto.stepfunctions.parser.asl.component.common.catch.catch_outcome import (
    CatchOutcome,
)
from moto.stepfunctions.parser.asl.component.common.error_name.failure_event import (
    FailureEvent,
    FailureEventException,
)
from moto.stepfunctions.parser.asl.component.common.error_name.states_error_name import (
    StatesErrorName,
)
from moto.stepfunctions.parser.asl.component.common.error_name.states_error_name_type import (
    StatesErrorNameType,
)
from moto.stepfunctions.parser.asl.component.common.parargs import Parameters, Parargs
from moto.stepfunctions.parser.asl.component.common.path.items_path import ItemsPath
from moto.stepfunctions.parser.asl.component.common.path.result_path import ResultPath
from moto.stepfunctions.parser.asl.component.common.result_selector import (
    ResultSelector,
)
from moto.stepfunctions.parser.asl.component.common.retry.retry_decl import RetryDecl
from moto.stepfunctions.parser.asl.component.common.retry.retry_outcome import (
    RetryOutcome,
)
from moto.stepfunctions.parser.asl.component.common.string.string_expression import (
    JSONPATH_ROOT_PATH,
    StringJsonPath,
)
from moto.stepfunctions.parser.asl.component.state.exec.execute_state import (
    ExecutionState,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.item_reader.item_reader_decl import (
    ItemReader,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.item_selector import (
    ItemSelector,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.items.items import (
    Items,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.distributed_iteration_component import (
    DistributedIterationComponent,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.itemprocessor.distributed_item_processor import (
    DistributedItemProcessor,
    DistributedItemProcessorEvalInput,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.itemprocessor.inline_item_processor import (
    InlineItemProcessor,
    InlineItemProcessorEvalInput,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.itemprocessor.item_processor_decl import (
    ItemProcessorDecl,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.itemprocessor.item_processor_factory import (
    from_item_processor_decl,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.itemprocessor.map_run_record import (
    MapRunRecord,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.iteration_component import (
    IterationComponent,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.iterator.distributed_iterator import (
    DistributedIterator,
    DistributedIteratorEvalInput,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.iterator.inline_iterator import (
    InlineIterator,
    InlineIteratorEvalInput,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.iterator.iterator_decl import (
    IteratorDecl,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.iteration.iterator.iterator_factory import (
    from_iterator_decl,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.label import (
    Label,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.max_concurrency import (
    MaxConcurrency,
    MaxConcurrencyDecl,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.result_writer.result_writer_decl import (
    ResultWriter,
)
from moto.stepfunctions.parser.asl.component.state.exec.state_map.tolerated_failure import (
    ToleratedFailureCountDecl,
    ToleratedFailureCountInt,
    ToleratedFailurePercentage,
    ToleratedFailurePercentageDecl,
)
from moto.stepfunctions.parser.asl.component.state.state_props import StateProps
from moto.stepfunctions.parser.asl.eval.environment import Environment
from moto.stepfunctions.parser.asl.eval.event.event_detail import EventDetails


class StateMap(ExecutionState):
    items: Optional[Items]
    items_path: Optional[ItemsPath]
    iteration_component: IterationComponent
    item_reader: Optional[ItemReader]
    item_selector: Optional[ItemSelector]
    parameters: Optional[Parameters]
    max_concurrency_decl: MaxConcurrencyDecl
    tolerated_failure_count_decl: ToleratedFailureCountDecl
    tolerated_failure_percentage_decl: ToleratedFailurePercentage
    result_path: Optional[ResultPath]
    result_selector: ResultSelector
    retry: Optional[RetryDecl]
    catch: Optional[CatchDecl]
    label: Optional[Label]
    result_writer: Optional[ResultWriter]

    def __init__(self):
        super().__init__(
            state_entered_event_type=HistoryEventType.MapStateEntered,
            state_exited_event_type=HistoryEventType.MapStateExited,
        )

    def from_state_props(self, state_props: StateProps) -> None:
        super().from_state_props(state_props)
        if self._is_language_query_jsonpath():
            self.items = None
            self.items_path = state_props.get(ItemsPath) or ItemsPath(
                string_sampler=StringJsonPath(JSONPATH_ROOT_PATH)
            )
        else:
            # TODO: add snapshot test to assert what missing definitions of items means for a states map
            self.items_path = None
            self.items = state_props.get(Items)
        self.item_reader = state_props.get(ItemReader)
        self.item_selector = state_props.get(ItemSelector)
        self.parameters = state_props.get(Parargs)
        self.max_concurrency_decl = (
            state_props.get(MaxConcurrencyDecl) or MaxConcurrency()
        )
        self.tolerated_failure_count_decl = (
            state_props.get(ToleratedFailureCountDecl) or ToleratedFailureCountInt()
        )
        self.tolerated_failure_percentage_decl = (
            state_props.get(ToleratedFailurePercentageDecl)
            or ToleratedFailurePercentage()
        )
        self.result_path = state_props.get(ResultPath) or ResultPath(
            result_path_src=ResultPath.DEFAULT_PATH
        )
        self.result_selector = state_props.get(ResultSelector)
        self.retry = state_props.get(RetryDecl)
        self.catch = state_props.get(CatchDecl)
        self.label = state_props.get(Label)
        self.result_writer = state_props.get(ResultWriter)

        iterator_decl = state_props.get(typ=IteratorDecl)
        item_processor_decl = state_props.get(typ=ItemProcessorDecl)

        if iterator_decl and item_processor_decl:
            raise ValueError("Cannot define both Iterator and ItemProcessor.")

        iteration_decl = iterator_decl or item_processor_decl
        if iteration_decl is None:
            raise ValueError(
                f"Missing ItemProcessor/Iterator definition in props '{state_props}'."
            )

        if isinstance(iteration_decl, IteratorDecl):
            self.iteration_component = from_iterator_decl(iteration_decl)
        elif isinstance(iteration_decl, ItemProcessorDecl):
            self.iteration_component = from_item_processor_decl(iteration_decl)
        else:
            raise ValueError(f"Unknown value for IteratorDecl '{iteration_decl}'.")

    def _eval_execution(self, env: Environment) -> None:
        self.max_concurrency_decl.eval(env=env)
        max_concurrency_num = env.stack.pop()
        label = self.label.label if self.label else None

        # Despite MaxConcurrency and Tolerance fields being state level fields, AWS StepFunctions evaluates only
        # MaxConcurrency as a state level field. In contrast, Tolerance is evaluated only after the state start
        # event but is logged with event IDs coherent with state level fields. To adhere to this quirk, an evaluation
        # frame from this point is created for the evaluation of Tolerance fields following the state start event.
        frame: Environment = env.open_frame()
        frame.states.reset(input_value=env.states.get_input())
        frame.stack = copy.deepcopy(env.stack)

        try:
            # ItemsPath in DistributedMap states is only used if a JSONinput is passed from the previous state.
            if (
                not isinstance(self.iteration_component, DistributedIterationComponent)
                or self.item_reader is None
            ):
                if self.items_path:
                    self.items_path.eval(env=env)

            if self.items:
                self.items.eval(env=env)

            if self.item_reader:
                env.event_manager.add_event(
                    context=env.event_history_context,
                    event_type=HistoryEventType.MapStateStarted,
                    event_details=EventDetails(
                        mapStateStartedEventDetails=MapStateStartedEventDetails(
                            length=0
                        )
                    ),
                )
                input_items = None
            else:
                input_items = env.stack.pop()
                # TODO: This should probably be raised within an Items EvalComponent
                if not isinstance(input_items, list):
                    error_name = StatesErrorName(
                        typ=StatesErrorNameType.StatesQueryEvaluationError
                    )
                    failure_event = FailureEvent(
                        env=env,
                        error_name=error_name,
                        event_type=HistoryEventType.EvaluationFailed,
                        event_details=EventDetails(
                            evaluationFailedEventDetails=EvaluationFailedEventDetails(
                                cause=f"Map state input must be an array but was: {type(input_items)}",
                                error=error_name.error_name,
                            )
                        ),
                    )
                    raise FailureEventException(failure_event=failure_event)
                env.event_manager.add_event(
                    context=env.event_history_context,
                    event_type=HistoryEventType.MapStateStarted,
                    event_details=EventDetails(
                        mapStateStartedEventDetails=MapStateStartedEventDetails(
                            length=len(input_items)
                        )
                    ),
                )

            self.tolerated_failure_count_decl.eval(env=frame)
            tolerated_failure_count = frame.stack.pop()
            self.tolerated_failure_percentage_decl.eval(env=frame)
            tolerated_failure_percentage = frame.stack.pop()
        finally:
            env.close_frame(frame)

        if isinstance(self.iteration_component, InlineIterator):
            eval_input = InlineIteratorEvalInput(
                state_name=self.name,
                max_concurrency=max_concurrency_num,
                input_items=input_items,
                parameters=self.parameters,
                item_selector=self.item_selector,
            )
        elif isinstance(self.iteration_component, InlineItemProcessor):
            eval_input = InlineItemProcessorEvalInput(
                state_name=self.name,
                max_concurrency=max_concurrency_num,
                input_items=input_items,
                item_selector=self.item_selector,
                parameters=self.parameters,
            )
        else:
            map_run_record = MapRunRecord(
                state_machine_arn=env.states.context_object.context_object_data[
                    "StateMachine"
                ]["Id"],
                execution_arn=env.states.context_object.context_object_data[
                    "Execution"
                ]["Id"],
                max_concurrency=max_concurrency_num,
                tolerated_failure_count=tolerated_failure_count,
                tolerated_failure_percentage=tolerated_failure_percentage,
                label=label,
            )
            env.map_run_record_pool_manager.add(map_run_record)
            # Choose the distributed input type depending on whether the definition
            # asks for the legacy Iterator component or an ItemProcessor
            if isinstance(self.iteration_component, DistributedIterator):
                distributed_eval_input_class = DistributedIteratorEvalInput
            elif isinstance(self.iteration_component, DistributedItemProcessor):
                distributed_eval_input_class = DistributedItemProcessorEvalInput
            else:
                raise RuntimeError(
                    f"Unknown iteration component of type '{type(self.iteration_component)}' '{self.iteration_component}'."
                )
            eval_input = distributed_eval_input_class(
                state_name=self.name,
                max_concurrency=max_concurrency_num,
                input_items=input_items,
                parameters=self.parameters,
                item_selector=self.item_selector,
                item_reader=self.item_reader,
                tolerated_failure_count=tolerated_failure_count,
                tolerated_failure_percentage=tolerated_failure_percentage,
                label=label,
                map_run_record=map_run_record,
            )

        env.stack.append(eval_input)
        self.iteration_component.eval(env)

        if self.result_writer:
            self.result_writer.eval(env)

        env.event_manager.add_event(
            context=env.event_history_context,
            event_type=HistoryEventType.MapStateSucceeded,
            update_source_event_id=False,
        )

    def _eval_state(self, env: Environment) -> None:
        # Initialise the retry counter for execution states.
        env.states.context_object.context_object_data["State"]["RetryCount"] = 0

        # Attempt to evaluate the state's logic through until it's successful, caught, or retries have run out.
        while env.is_running():
            try:
                self._evaluate_with_timeout(env)
                break
            except Exception as ex:
                failure_event: FailureEvent = self._from_error(env=env, ex=ex)
                error_output = self._construct_error_output_value(
                    failure_event=failure_event
                )
                env.states.set_error_output(error_output)
                env.states.set_result(error_output)

                if self.retry:
                    retry_outcome: RetryOutcome = self._handle_retry(
                        env=env, failure_event=failure_event
                    )
                    if retry_outcome == RetryOutcome.CanRetry:
                        continue

                if failure_event.event_type != HistoryEventType.ExecutionFailed:
                    if (
                        isinstance(ex, FailureEventException)
                        and failure_event.event_type
                        == HistoryEventType.EvaluationFailed
                    ):
                        env.event_manager.add_event(
                            context=env.event_history_context,
                            event_type=HistoryEventType.EvaluationFailed,
                            event_details=EventDetails(
                                evaluationFailedEventDetails=ex.get_evaluation_failed_event_details(),
                            ),
                        )
                    env.event_manager.add_event(
                        context=env.event_history_context,
                        event_type=HistoryEventType.MapStateFailed,
                    )

                if self.catch:
                    self._handle_catch(env=env, failure_event=failure_event)
                    catch_outcome: CatchOutcome = env.stack[-1]
                    if catch_outcome == CatchOutcome.Caught:
                        break

                self._handle_uncaught(env=env, failure_event=failure_event)