1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
import uuid
import boto3
import pytest
from botocore.exceptions import ClientError
from moto import mock_aws
from moto.core import DEFAULT_ACCOUNT_ID as ACCOUNT_ID
def _create_databrew_client():
client = boto3.client("databrew", region_name="us-west-1")
return client
def _create_test_dataset(
client,
tags=None,
dataset_name=None,
dataset_format="JSON",
dataset_format_options=None,
):
if dataset_name is None:
dataset_name = str(uuid.uuid4())
if not dataset_format_options:
if dataset_format == "JSON":
dataset_format_options = {"Json": {"MultiLine": True}}
elif dataset_format == "CSV":
dataset_format_options = {"Csv": {"Delimiter": ",", "HeaderRow": False}}
elif dataset_format == "EXCEL":
dataset_format_options = {
"Excel": {
"SheetNames": [
"blaa",
],
"SheetIndexes": [
123,
],
"HeaderRow": True,
}
}
return client.create_dataset(
Name=dataset_name,
Format=dataset_format,
FormatOptions=dataset_format_options,
Input={
"S3InputDefinition": {
"Bucket": "somerandombucketname",
},
"DataCatalogInputDefinition": {
"DatabaseName": "somedbname",
"TableName": "sometablename",
"TempDirectory": {
"Bucket": "sometempbucketname",
},
},
"DatabaseInputDefinition": {
"GlueConnectionName": "someglueconnectionname",
"TempDirectory": {
"Bucket": "sometempbucketname",
},
},
},
PathOptions={
"LastModifiedDateCondition": {
"Expression": "string",
"ValuesMap": {"string": "string"},
},
"FilesLimit": {
"MaxFiles": 123,
"OrderedBy": "LAST_MODIFIED_DATE",
"Order": "ASCENDING",
},
"Parameters": {
"string": {
"Name": "string",
"Type": "string",
"CreateColumn": False,
"Filter": {
"Expression": "string",
"ValuesMap": {"string": "string"},
},
}
},
},
Tags=tags or {},
)
def _create_test_datasets(client, count):
for _ in range(count):
_create_test_dataset(client)
@mock_aws
def test_dataset_list_when_empty():
client = _create_databrew_client()
response = client.list_datasets()
assert "Datasets" in response
assert len(response["Datasets"]) == 0
@mock_aws
def test_list_datasets_with_max_results():
client = _create_databrew_client()
_create_test_datasets(client, 4)
response = client.list_datasets(MaxResults=2)
assert len(response["Datasets"]) == 2
assert "ResourceArn" in response["Datasets"][0]
assert "NextToken" in response
@mock_aws
def test_list_datasets_from_next_token():
client = _create_databrew_client()
_create_test_datasets(client, 10)
first_response = client.list_datasets(MaxResults=3)
response = client.list_datasets(NextToken=first_response["NextToken"])
assert len(response["Datasets"]) == 7
@mock_aws
def test_list_datasets_with_max_results_greater_than_actual_results():
client = _create_databrew_client()
_create_test_datasets(client, 4)
response = client.list_datasets(MaxResults=10)
assert len(response["Datasets"]) == 4
@mock_aws
def test_describe_dataset():
client = _create_databrew_client()
# region basic test
response = _create_test_dataset(client)
dataset = client.describe_dataset(Name=response["Name"])
assert dataset["Name"] == response["Name"]
assert (
dataset["ResourceArn"]
== f"arn:aws:databrew:us-west-1:{ACCOUNT_ID}:dataset/{response['Name']}"
)
# endregion
# region JSON test
response = _create_test_dataset(client, dataset_format="CSV")
dataset = client.describe_dataset(Name=response["Name"])
assert dataset["Format"] == "CSV"
# endregion
@mock_aws
def test_describe_dataset_that_does_not_exist():
client = _create_databrew_client()
with pytest.raises(ClientError) as exc:
client.describe_dataset(Name="DoseNotExist")
err = exc.value.response["Error"]
assert err["Code"] == "ResourceNotFoundException"
assert err["Message"] == "One or more resources can't be found."
@mock_aws
def test_create_dataset_that_already_exists():
client = _create_databrew_client()
response = _create_test_dataset(client)
with pytest.raises(ClientError) as exc:
_create_test_dataset(client, dataset_name=response["Name"])
err = exc.value.response["Error"]
assert err["Code"] == "AlreadyExistsException"
assert err["Message"] == f"{response['Name']} already exists."
@mock_aws
@pytest.mark.parametrize("name", ["name", "name with space"])
def test_delete_dataset(name):
client = _create_databrew_client()
response = _create_test_dataset(client, dataset_name=name)
assert response["Name"] == name
# Check dataset exists
dataset = client.describe_dataset(Name=name)
assert dataset["Name"] == name
# Delete the dataset
client.delete_dataset(Name=name)
# Check it does not exist anymore
with pytest.raises(ClientError) as exc:
client.describe_dataset(Name=name)
err = exc.value.response["Error"]
assert err["Code"] == "ResourceNotFoundException"
assert err["Message"] == "One or more resources can't be found."
# Check that a dataset that does not exist errors
with pytest.raises(ClientError) as exc:
client.delete_dataset(Name=name)
err = exc.value.response["Error"]
assert err["Code"] == "ResourceNotFoundException"
assert err["Message"] == "One or more resources can't be found."
@mock_aws
@pytest.mark.parametrize("name", ["name", "name with space"])
def test_update_dataset(name):
client = _create_databrew_client()
_create_test_dataset(client, dataset_name=name)
# Update the dataset and check response
dataset = client.update_dataset(
Name=name,
Format="TEST",
Input={
"S3InputDefinition": {
"Bucket": "somerandombucketname",
},
"DataCatalogInputDefinition": {
"DatabaseName": "somedbname",
"TableName": "sometablename",
"TempDirectory": {
"Bucket": "sometempbucketname",
},
},
"DatabaseInputDefinition": {
"GlueConnectionName": "someglueconnectionname",
"TempDirectory": {
"Bucket": "sometempbucketname",
},
},
},
)
assert dataset["Name"] == name
# Describe the dataset and check the changes
dataset = client.describe_dataset(Name=name)
assert dataset["Name"] == name
assert dataset["Format"] == "TEST"
assert (
dataset["ResourceArn"]
== f"arn:aws:databrew:us-west-1:{ACCOUNT_ID}:dataset/{name}"
)
@mock_aws
def test_update_dataset_that_does_not_exist():
client = _create_databrew_client()
# Update the dataset and check response
with pytest.raises(ClientError) as exc:
client.update_dataset(
Name="RANDOMNAME",
Format="TEST",
Input={
"S3InputDefinition": {
"Bucket": "somerandombucketname",
},
"DataCatalogInputDefinition": {
"DatabaseName": "somedbname",
"TableName": "sometablename",
"TempDirectory": {
"Bucket": "sometempbucketname",
},
},
"DatabaseInputDefinition": {
"GlueConnectionName": "someglueconnectionname",
"TempDirectory": {
"Bucket": "sometempbucketname",
},
},
},
)
err = exc.value.response["Error"]
assert err["Code"] == "ResourceNotFoundException"
assert err["Message"] == "One or more resources can't be found."
|