File: mprester.py

package info (click to toggle)
python-mp-api 0.45.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,988 kB
  • sloc: python: 6,712; makefile: 14
file content (1622 lines) | stat: -rw-r--r-- 68,212 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
from __future__ import annotations

import itertools
import json
import os
import warnings
from functools import cache, lru_cache
from json import loads
from typing import TYPE_CHECKING

from emmet.core.electronic_structure import BSPathType
from emmet.core.mpid import MPID
from emmet.core.settings import EmmetSettings
from emmet.core.tasks import TaskDoc
from emmet.core.vasp.calc_types import CalcType
from monty.json import MontyDecoder
from packaging import version
from pymatgen.analysis.phase_diagram import PhaseDiagram
from pymatgen.analysis.pourbaix_diagram import IonEntry
from pymatgen.core import SETTINGS, Composition, Element, Structure
from pymatgen.core.ion import Ion
from pymatgen.entries.computed_entries import ComputedStructureEntry
from pymatgen.io.vasp import Chgcar
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
from requests import Session, get

from mp_api.client.core import BaseRester, MPRestError
from mp_api.client.core.settings import MAPIClientSettings
from mp_api.client.core.utils import validate_ids
from mp_api.client.routes import GeneralStoreRester, MessagesRester, UserSettingsRester
from mp_api.client.routes.materials import (
    AbsorptionRester,
    AlloysRester,
    BandStructureRester,
    BondsRester,
    ChemenvRester,
    DielectricRester,
    DOIRester,
    DosRester,
    ElasticityRester,
    ElectrodeRester,
    ElectronicStructureRester,
    EOSRester,
    GrainBoundaryRester,
    MagnetismRester,
    OxidationStatesRester,
    PhononRester,
    PiezoRester,
    ProvenanceRester,
    RobocrysRester,
    SimilarityRester,
    SubstratesRester,
    SummaryRester,
    SurfacePropertiesRester,
    SynthesisRester,
    TaskRester,
    ThermoRester,
    XASRester,
)
from mp_api.client.routes.materials.materials import MaterialsRester
from mp_api.client.routes.molecules import MoleculeRester

if TYPE_CHECKING:
    from typing import Literal


_EMMET_SETTINGS = EmmetSettings()
_MAPI_SETTINGS = MAPIClientSettings()


class MPRester:
    """Access the new Materials Project API."""

    # Type hints for all routes
    # To re-generate this list, use:
    # for rester in MPRester()._all_resters:
    #     print(f"{rester.suffix.replace('/', '_')}: {rester.__class__.__name__}")

    # Materials
    eos: EOSRester
    materials: MaterialsRester
    similarity: SimilarityRester
    tasks: TaskRester
    xas: XASRester
    grain_boundaries: GrainBoundaryRester
    substrates: SubstratesRester
    surface_properties: SurfacePropertiesRester
    phonon: PhononRester
    elasticity: ElasticityRester
    thermo: ThermoRester
    dielectric: DielectricRester
    piezoelectric: PiezoRester
    magnetism: MagnetismRester
    summary: SummaryRester
    robocrys: RobocrysRester
    synthesis: SynthesisRester
    insertion_electrodes: ElectrodeRester
    electronic_structure: ElectronicStructureRester
    electronic_structure_bandstructure: BandStructureRester
    electronic_structure_dos: DosRester
    oxidation_states: OxidationStatesRester
    provenance: ProvenanceRester
    bonds: BondsRester
    alloys: AlloysRester
    absorption: AbsorptionRester
    chemenv: ChemenvRester

    # Molecules
    molecules: MoleculeRester

    # Generic
    doi: DOIRester
    _user_settings: UserSettingsRester
    _general_store: GeneralStoreRester
    _messages: MessagesRester

    def __init__(
        self,
        api_key: str | None = None,
        endpoint: str | None = None,
        notify_db_version: bool = False,
        include_user_agent: bool = True,
        monty_decode: bool = True,
        use_document_model: bool = True,
        session: Session | None = None,
        headers: dict | None = None,
        mute_progress_bars: bool = _MAPI_SETTINGS.MUTE_PROGRESS_BARS,
    ):
        """Initialize the MPRester.

        Arguments:
            api_key (str): A String API key for accessing the MaterialsProject
                REST interface. Please obtain your API key at
                https://next-gen.materialsproject.org/api. If this is None,
                the code will check if there is a "MP_API_KEY" setting.
                If so, it will use that environment variable. This makes
                easier for heavy users to simply add this environment variable to
                their setups and MPRester can then be called without any arguments.
            endpoint (str): URL of endpoint to access the MaterialsProject REST
                interface. Defaults to the standard Materials Project REST
                address at "https://api.materialsproject.org", but
                can be changed to other URLs implementing a similar interface.
            notify_db_version (bool): If True, the current MP database version will
                be retrieved and logged locally in the ~/.mprester.log.yaml. If the database
                version changes, you will be notified. The current database version is
                also printed on instantiation. These local logs are not sent to
                materialsproject.org and are not associated with your API key, so be
                aware that a notification may not be presented if you run MPRester
                from multiple computing environments.
            include_user_agent (bool): If True, will include a user agent with the
                HTTP request including information on pymatgen and system version
                making the API request. This helps MP support pymatgen users, and
                is similar to what most web browsers send with each page request.
                Set to False to disable the user agent.
            monty_decode: Decode the data using monty into python objects
            use_document_model: If False, skip the creating the document model and return data
                as a dictionary. This can be simpler to work with but bypasses data validation
                and will not give auto-complete for available fields.
            session: Session object to use. By default (None), the client will create one.
            headers: Custom headers for localhost connections.
            mute_progress_bars:  Whether to mute progress bars.

        """
        # SETTINGS tries to read API key from ~/.config/.pmgrc.yaml
        api_key = api_key or os.getenv("MP_API_KEY") or SETTINGS.get("PMG_MAPI_KEY")

        if api_key and len(api_key) != 32:
            raise ValueError(
                "Please use a new API key from https://materialsproject.org/api "
                "Keys for the new API are 32 characters, whereas keys for the legacy "
                "API are 16 characters."
            )

        self.api_key = api_key
        self.endpoint = endpoint or os.getenv(
            "MP_API_ENDPOINT", "https://api.materialsproject.org/"
        )
        self.headers = headers or {}
        self.session = session or BaseRester._create_session(
            api_key=self.api_key,
            include_user_agent=include_user_agent,
            headers=self.headers,
        )
        self.use_document_model = use_document_model
        self.monty_decode = monty_decode
        self.mute_progress_bars = mute_progress_bars
        self._contribs = None

        self._deprecated_attributes = [
            "eos",
            "similarity",
            "tasks",
            "xas",
            "fermi",
            "grain_boundaries",
            "substrates",
            "surface_properties",
            "phonon",
            "elasticity",
            "thermo",
            "dielectric",
            "piezoelectric",
            "magnetism",
            "summary",
            "robocrys",
            "synthesis",
            "insertion_electrodes",
            "electronic_structure",
            "electronic_structure_bandstructure",
            "electronic_structure_dos",
            "oxidation_states",
            "provenance",
            "bonds",
            "alloys",
            "absorption",
            "chemenv",
        ]

        # Check if emmet version of server is compatible
        emmet_version = MPRester.get_emmet_version(self.endpoint)

        if version.parse(emmet_version.base_version) < version.parse(
            _MAPI_SETTINGS.MIN_EMMET_VERSION
        ):
            warnings.warn(
                "The installed version of the mp-api client may not be compatible with the API server. "
                "Please install a previous version if any problems occur."
            )

        if notify_db_version:
            raise NotImplementedError("This has not yet been implemented.")

        if not self.endpoint.endswith("/"):
            self.endpoint += "/"

        # Dynamically set rester attributes.
        # First, materials and molecules top level resters are set.
        # Nested rested are then setup to be loaded dynamically with custom __getattr__ functions.
        self._all_resters = []

        # Get all rester classes
        for _cls in BaseRester.__subclasses__():
            sub_resters = _cls.__subclasses__()
            if sub_resters:
                self._all_resters.extend(sub_resters)
            else:
                self._all_resters.append(_cls)

        # Instantiate top level molecules and materials resters and set them as attributes
        core_suffix = ["molecules/core", "materials/core"]

        core_resters = {
            cls.suffix.split("/")[0]: cls(
                api_key=api_key,
                endpoint=self.endpoint,
                include_user_agent=include_user_agent,
                session=self.session,
                monty_decode=self.monty_decode,
                use_document_model=self.use_document_model,
                headers=self.headers,
                mute_progress_bars=self.mute_progress_bars,
            )
            for cls in self._all_resters
            if cls.suffix in core_suffix
        }

        # Set remaining top level resters, or get an attribute-class name mapping
        # for all sub-resters
        _sub_rester_suffix_map = {"materials": {}, "molecules": {}}

        for cls in self._all_resters:
            if cls.suffix not in core_suffix:
                suffix_split = cls.suffix.split("/")

                if len(suffix_split) == 1:
                    # Disable monty decode on nested data which may give errors
                    monty_disable = cls in [TaskRester, ProvenanceRester]
                    monty_decode = False if monty_disable else self.monty_decode
                    rester = cls(
                        api_key=api_key,
                        endpoint=self.endpoint,
                        include_user_agent=include_user_agent,
                        session=self.session,
                        monty_decode=monty_decode,
                        use_document_model=self.use_document_model,
                        headers=self.headers,
                        mute_progress_bars=self.mute_progress_bars,
                    )  # type: BaseRester
                    setattr(
                        self,
                        suffix_split[0],
                        rester,
                    )
                else:
                    attr = "_".join(suffix_split[1:])
                    if "materials" in suffix_split:
                        _sub_rester_suffix_map["materials"][attr] = cls
                    elif "molecules" in suffix_split:
                        _sub_rester_suffix_map["molecules"][attr] = cls

        # TODO: Enable monty decoding when tasks and SNL schema is normalized
        #
        # Allow lazy loading of nested resters under materials and molecules using custom __getattr__ methods
        def __core_custom_getattr(_self, _attr, _rester_map):
            if _attr in _rester_map:
                cls = _rester_map[_attr]
                monty_disable = cls in [TaskRester, ProvenanceRester]
                monty_decode = False if monty_disable else self.monty_decode
                rester = cls(
                    api_key=api_key,
                    endpoint=self.endpoint,
                    include_user_agent=include_user_agent,
                    session=self.session,
                    monty_decode=monty_decode,
                    use_document_model=self.use_document_model,
                    headers=self.headers,
                    mute_progress_bars=self.mute_progress_bars,
                )  # type: BaseRester

                setattr(
                    _self,
                    _attr,
                    rester,
                )

                return rester
            else:
                raise AttributeError(
                    f"{_self.__class__.__name__!r} object has no attribute {_attr!r}"
                )

        def __materials_getattr__(_self, attr):
            _rester_map = _sub_rester_suffix_map["materials"]
            rester = __core_custom_getattr(_self, attr, _rester_map)
            return rester

        def __molecules_getattr__(_self, attr):
            _rester_map = _sub_rester_suffix_map["molecules"]
            rester = __core_custom_getattr(_self, attr, _rester_map)
            return rester

        MaterialsRester.__getattr__ = __materials_getattr__  # type: ignore
        MoleculeRester.__getattr__ = __molecules_getattr__  # type: ignore

        for attr, rester in core_resters.items():
            setattr(
                self,
                attr,
                rester,
            )

    @property
    def contribs(self):
        if self._contribs is None:
            try:
                from mpcontribs.client import Client

                self._contribs = Client(
                    self.api_key,  # type: ignore
                    headers=self.headers,
                    session=self.session,
                )

            except ImportError:
                self._contribs = None
                warnings.warn(
                    "mpcontribs-client not installed. "
                    "Install the package to query MPContribs data, or construct pourbaix diagrams: "
                    "'pip install mpcontribs-client'"
                )
            except Exception as error:
                self._contribs = None
                warnings.warn(f"Problem loading MPContribs client: {error}")

        return self._contribs

    def __enter__(self):
        """Support for "with" context."""
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        """Support for "with" context."""
        self.session.close()

    def __getattr__(self, attr):
        if attr in self._deprecated_attributes:
            warnings.warn(
                f"Accessing {attr} data through MPRester.{attr} is deprecated. "
                f"Please use MPRester.materials.{attr} instead.",
                DeprecationWarning,
                stacklevel=2,
            )
            return getattr(super().__getattribute__("materials"), attr)
        else:
            raise AttributeError(
                f"{self.__class__.__name__!r} object has no attribute {attr!r}"
            )

    def __dir__(self):
        return dir(MPRester) + self._deprecated_attributes + ["materials", "molecules"]

    def get_task_ids_associated_with_material_id(
        self, material_id: str, calc_types: list[CalcType] | None = None
    ) -> list[str]:
        """Get Task ID values associated with a specific Material ID.

        Args:
            material_id (str): Material ID
            calc_types ([CalcType]): If specified, will restrict to a certain task type, e.g. [CalcType.GGA_STATIC]

        Returns:
            ([str]): List of Task ID values.
        """
        tasks = self.materials.search(material_ids=material_id, fields=["calc_types"])

        if not tasks:
            return []

        calculations = (
            tasks[0].calc_types  # type: ignore
            if self.use_document_model
            else tasks[0]["calc_types"]  # type: ignore
        )

        if calc_types:
            return [
                task
                for task, calc_type in calculations.items()
                if calc_type in calc_types
            ]
        else:
            return list(calculations.keys())

    def get_structure_by_material_id(
        self, material_id: str, final: bool = True, conventional_unit_cell: bool = False
    ) -> Structure | list[Structure]:
        """Get a Structure corresponding to a material_id.

        Args:
            material_id (str): Materials Project material_id (a string,
                e.g., mp-1234).
            final (bool): Whether to get the final structure, or the list of initial
                (pre-relaxation) structures. Defaults to True.
            conventional_unit_cell (bool): Whether to get the standard
                conventional unit cell for the final or list of initial structures.

        Returns:
            Structure object or list of Structure objects.
        """
        structure_data = self.materials.get_structure_by_material_id(
            material_id=material_id, final=final
        )

        if conventional_unit_cell and structure_data:
            if final:
                structure_data = SpacegroupAnalyzer(
                    structure_data
                ).get_conventional_standard_structure()
            else:
                structure_data = [
                    SpacegroupAnalyzer(structure).get_conventional_standard_structure()
                    for structure in structure_data
                ]

        return structure_data

    def get_database_version(self):
        """The Materials Project database is periodically updated and has a
        database version associated with it. When the database is updated,
        consolidated data (information about "a material") may and does
        change, while calculation data about a specific calculation task
        remains unchanged and available for querying via its task_id.

        The database version is set as a date in the format YYYY_MM_DD,
        where "_DD" may be optional. An additional numerical suffix
        might be added if multiple releases happen on the same day.

        Returns: database version as a string
        """
        return get(url=self.endpoint + "heartbeat").json()["db_version"]

    @staticmethod
    @cache
    def get_emmet_version(endpoint):
        """Get the latest version emmet-core and emmet-api used in the
        current API service.

        Returns: version as a string
        """
        response = get(url=endpoint + "heartbeat").json()

        error = response.get("error", None)
        if error:
            raise MPRestError(error)

        return version.parse(response["version"])

    def get_material_id_from_task_id(self, task_id: str) -> str | None:
        """Returns the current material_id from a given task_id. The
        material_id should rarely change, and is usually chosen from
        among the smallest numerical id from the group of task_ids for
        that material. However, in some circumstances it might change,
        and this method is useful for finding the new material_id.

        Args:
            task_id (str): A task id.

        Returns:
            material_id (MPID)
        """
        docs = self.materials.search(task_ids=[task_id], fields=["material_id"])
        if len(docs) == 1:  # pragma: no cover
            return str(docs[0].material_id)  # type: ignore
        elif len(docs) > 1:  # pragma: no cover
            raise ValueError(
                f"Multiple documents return for {task_id}, this should not happen, please report it!"
            )
        else:  # pragma: no cover
            warnings.warn(
                f"No material found containing task {task_id}. Please report it if you suspect a task has gone missing."
            )
            return None

    def get_material_id_references(self, material_id: str) -> list[str]:
        """Returns all references for a material id.

        Args:
            material_id (str): A material id.

        Returns:
            List of BibTeX references ([str])
        """
        docs = self.materials.provenance.search(material_ids=material_id)

        if not docs:
            return []

        return docs[0].references if self.use_document_model else docs[0]["references"]  # type: ignore

    def get_material_ids(
        self,
        chemsys_formula: str | list[str],
    ) -> list[MPID]:
        """Get all materials ids for a formula or chemsys.

        Args:
            chemsys_formula (str, List[str]): A chemical system, list of chemical systems
            (e.g., Li-Fe-O, Si-*, [Si-O, Li-Fe-P]), or single formula (e.g., Fe2O3, Si*).

        Returns:
            List of all materials ids ([MPID])
        """
        if isinstance(chemsys_formula, list) or (
            isinstance(chemsys_formula, str) and "-" in chemsys_formula
        ):
            input_params = {"chemsys": chemsys_formula}
        else:
            input_params = {"formula": chemsys_formula}

        return sorted(
            doc.material_id if self.use_document_model else doc["material_id"]  # type: ignore
            for doc in self.materials.search(
                **input_params,  # type: ignore
                all_fields=False,
                fields=["material_id"],
            )
        )

    def get_structures(
        self, chemsys_formula: str | list[str], final=True
    ) -> list[Structure]:
        """Get a list of Structures corresponding to a chemical system or formula.

        Args:
            chemsys_formula (str, List[str]): A chemical system, list of chemical systems
                (e.g., Li-Fe-O, Si-*, [Si-O, Li-Fe-P]), or single formula (e.g., Fe2O3, Si*).
            final (bool): Whether to get the final structure, or the list of initial
                (pre-relaxation) structures. Defaults to True.

        Returns:
            List of Structure objects. ([Structure])
        """
        if isinstance(chemsys_formula, list) or (
            isinstance(chemsys_formula, str) and "-" in chemsys_formula
        ):
            input_params = {"chemsys": chemsys_formula}
        else:
            input_params = {"formula": chemsys_formula}

        if final:
            docs = self.materials.search(
                **input_params,  # type: ignore
                all_fields=False,
                fields=["structure"],
            )
            if not self.use_document_model:
                return [doc["structure"] for doc in docs]  # type: ignore

            return [doc.structure for doc in docs]  # type: ignore
        else:
            structures = []

            for doc in self.materials.search(
                **input_params,  # type: ignore
                all_fields=False,
                fields=["initial_structures"],
            ):
                initial_structures = (
                    doc.initial_structures  # type: ignore
                    if self.use_document_model
                    else doc["initial_structures"]  # type: ignore
                )
                structures.extend(initial_structures)

            return structures

    def find_structure(
        self,
        filename_or_structure: str | Structure,
        ltol: float = _EMMET_SETTINGS.LTOL,
        stol: float = _EMMET_SETTINGS.STOL,
        angle_tol: float = _EMMET_SETTINGS.ANGLE_TOL,
        allow_multiple_results: bool = False,
    ) -> list[str] | str:
        """Finds matching structures from the Materials Project database.

        Multiple results may be returned of "similar" structures based on
        distance using the pymatgen StructureMatcher algorithm, however only
        a single result should match with the same spacegroup, calculated to the
        default tolerances.

        Args:
            filename_or_structure: filename or Structure object
            ltol: fractional length tolerance
            stol: site tolerance
            angle_tol: angle tolerance in degrees
            allow_multiple_results: changes return type for either
            a single material_id or list of material_ids
        Returns:
            A matching material_id if one is found or list of results if allow_multiple_results
            is True
        Raises:
            MPRestError
        """
        return self.materials.find_structure(
            filename_or_structure,
            ltol=ltol,
            stol=stol,
            angle_tol=angle_tol,
            allow_multiple_results=allow_multiple_results,
        )

    def get_entries(
        self,
        chemsys_formula_mpids: str | list[str],
        compatible_only: bool = True,
        inc_structure: bool | None = None,
        property_data: list[str] | None = None,
        conventional_unit_cell: bool = False,
        additional_criteria: dict | None = None,
    ) -> list[ComputedStructureEntry]:
        """Get a list of ComputedEntries or ComputedStructureEntries corresponding
        to a chemical system or formula. This returns entries for all thermo types
        represented in the database. Each type corresponds to a different mixing scheme
        (i.e. GGA/GGA+U, GGA/GGA+U/R2SCAN, R2SCAN). By default the thermo_type of the
        entry is also returned.

        Args:
            chemsys_formula_mpids (str, List[str]): A chemical system, list of chemical systems
                (e.g., Li-Fe-O, Si-*, [Si-O, Li-Fe-P]), formula, list of formulas
                (e.g., Fe2O3, Si*, [SiO2, BiFeO3]), Materials Project ID, or list of Materials
                Project IDs (e.g., mp-22526, [mp-22526, mp-149]).
            compatible_only (bool): Whether to return only "compatible"
                entries. Compatible entries are entries that have been
                processed using the MaterialsProject2020Compatibility class,
                which performs adjustments to allow mixing of GGA and GGA+U
                calculations for more accurate phase diagrams and reaction
                energies. This data is obtained from the core "thermo" API endpoint.
            inc_structure (str): *This is a deprecated argument*. Previously, if None, entries
                returned were ComputedEntries. If inc_structure="initial",
                ComputedStructureEntries with initial structures were returned.
                Otherwise, ComputedStructureEntries with final structures
                were returned. This is no longer needed as all entries will contain the
                final structure data by default.
            property_data (list): Specify additional properties to include in
                entry.data. If None, only default data is included. Should be a subset of
                input parameters in the 'MPRester.thermo.available_fields' list.
            conventional_unit_cell (bool): Whether to get the standard
                conventional unit cell
            additional_criteria (dict): Any additional criteria to pass. The keys and values should
                correspond to proper function inputs to `MPRester.thermo.search`. For instance,
                if you are only interested in entries on the convex hull, you could pass
                {"energy_above_hull": (0.0, 0.0)} or {"is_stable": True}.

        Returns:
            List ComputedStructureEntry objects.
        """
        if inc_structure is not None:
            warnings.warn(
                "The 'inc_structure' argument is deprecated as structure "
                "data is now always included in all returned entry objects."
            )

        if isinstance(chemsys_formula_mpids, str):
            chemsys_formula_mpids = [chemsys_formula_mpids]

        try:
            input_params = {"material_ids": validate_ids(chemsys_formula_mpids)}
        except ValueError:
            if any("-" in entry for entry in chemsys_formula_mpids):
                input_params = {"chemsys": chemsys_formula_mpids}
            else:
                input_params = {"formula": chemsys_formula_mpids}

        if additional_criteria:
            input_params = {**input_params, **additional_criteria}

        entries = []

        fields = (
            ["entries", "thermo_type"]
            if not property_data
            else ["entries", "thermo_type"] + property_data
        )

        docs = self.materials.thermo.search(
            **input_params,  # type: ignore
            all_fields=False,
            fields=fields,
        )

        for doc in docs:
            entry_list = (
                doc.entries.values()  # type: ignore
                if self.use_document_model
                else doc["entries"].values()  # type: ignore
            )
            for entry in entry_list:
                entry_dict: dict = entry.as_dict() if self.monty_decode else entry  # type: ignore
                if not compatible_only:
                    entry_dict["correction"] = 0.0
                    entry_dict["energy_adjustments"] = []

                if property_data:
                    for property in property_data:
                        entry_dict["data"][property] = (
                            doc.model_dump()[property]  # type: ignore
                            if self.use_document_model
                            else doc[property]  # type: ignore
                        )

                if conventional_unit_cell:
                    entry_struct = Structure.from_dict(entry_dict["structure"])
                    s = SpacegroupAnalyzer(
                        entry_struct
                    ).get_conventional_standard_structure()
                    site_ratio = len(s) / len(entry_struct)
                    new_energy = entry_dict["energy"] * site_ratio

                    entry_dict["energy"] = new_energy
                    entry_dict["structure"] = s.as_dict()
                    entry_dict["correction"] = 0.0

                    for element in entry_dict["composition"]:
                        entry_dict["composition"][element] *= site_ratio

                    for correction in entry_dict["energy_adjustments"]:
                        if "n_atoms" in correction:
                            correction["n_atoms"] *= site_ratio

                entry = (
                    ComputedStructureEntry.from_dict(entry_dict)
                    if self.monty_decode
                    else entry_dict
                )

                entries.append(entry)

        return entries

    def get_pourbaix_entries(
        self,
        chemsys: str | list,
        solid_compat="MaterialsProject2020Compatibility",
        use_gibbs: Literal[300] | None = None,
    ):
        """A helper function to get all entries necessary to generate
        a Pourbaix diagram from the rest interface.

        Args:
            chemsys (str or [str]): Chemical system string comprising element
                symbols separated by dashes, e.g., "Li-Fe-O" or List of element
                symbols, e.g., ["Li", "Fe", "O"].
            solid_compat: Compatibility scheme used to pre-process solid DFT energies prior
                to applying aqueous energy adjustments. May be passed as a class (e.g.
                MaterialsProject2020Compatibility) or an instance
                (e.g., MaterialsProject2020Compatibility()). If None, solid DFT energies
                are used as-is. Default: MaterialsProject2020Compatibility
            use_gibbs: Set to 300 (for 300 Kelvin) to use a machine learning model to
                estimate solid free energy from DFT energy (see GibbsComputedStructureEntry).
                This can slightly improve the accuracy of the Pourbaix diagram in some
                cases. Default: None. Note that temperatures other than 300K are not
                permitted here, because MaterialsProjectAqueousCompatibility corrections,
                used in Pourbaix diagram construction, are calculated based on 300 K data.
        """
        # imports are not top-level due to expense
        from pymatgen.analysis.pourbaix_diagram import PourbaixEntry
        from pymatgen.entries.compatibility import (
            Compatibility,
            MaterialsProject2020Compatibility,
            MaterialsProjectAqueousCompatibility,
            MaterialsProjectCompatibility,
        )
        from pymatgen.entries.computed_entries import ComputedEntry

        if solid_compat == "MaterialsProjectCompatibility":
            solid_compat = MaterialsProjectCompatibility()
        elif solid_compat == "MaterialsProject2020Compatibility":
            solid_compat = MaterialsProject2020Compatibility()
        elif isinstance(solid_compat, Compatibility):
            pass
        else:
            raise ValueError(
                "Solid compatibility can only be 'MaterialsProjectCompatibility', "
                "'MaterialsProject2020Compatibility', or an instance of a Compatibility class"
            )

        pbx_entries = []

        if isinstance(chemsys, str):
            chemsys = chemsys.split("-")
        # capitalize and sort the elements
        chemsys = sorted(e.capitalize() for e in chemsys)

        # Get ion entries first, because certain ions have reference
        # solids that aren't necessarily in the chemsys (Na2SO4)

        # download the ion reference data from MPContribs
        ion_data = self.get_ion_reference_data_for_chemsys(chemsys)

        # build the PhaseDiagram for get_ion_entries
        ion_ref_comps = [
            Ion.from_formula(d["data"]["RefSolid"]).composition for d in ion_data
        ]
        ion_ref_elts = set(
            itertools.chain.from_iterable(i.elements for i in ion_ref_comps)
        )
        # TODO - would be great if the commented line below would work
        # However for some reason you cannot process GibbsComputedStructureEntry with
        # MaterialsProjectAqueousCompatibility
        ion_ref_entries = self.get_entries_in_chemsys(
            list([str(e) for e in ion_ref_elts] + ["O", "H"]),
            # use_gibbs=use_gibbs
        )

        # suppress the warning about supplying the required energies; they will be calculated from the
        # entries we get from MPRester
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore",
                message="You did not provide the required O2 and H2O energies.",
            )
            compat = MaterialsProjectAqueousCompatibility(solid_compat=solid_compat)
        # suppress the warning about missing oxidation states
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore", message="Failed to guess oxidation states.*"
            )
            ion_ref_entries = compat.process_entries(ion_ref_entries)  # type: ignore
        # TODO - if the commented line above would work, this conditional block
        # could be removed
        if use_gibbs:
            # replace the entries with GibbsComputedStructureEntry
            from pymatgen.entries.computed_entries import GibbsComputedStructureEntry

            ion_ref_entries = GibbsComputedStructureEntry.from_entries(
                ion_ref_entries, temp=use_gibbs
            )
        ion_ref_pd = PhaseDiagram(ion_ref_entries)  # type: ignore

        ion_entries = self.get_ion_entries(ion_ref_pd, ion_ref_data=ion_data)
        pbx_entries = [PourbaixEntry(e, f"ion-{n}") for n, e in enumerate(ion_entries)]

        # Construct the solid pourbaix entries from filtered ion_ref entries
        extra_elts = (
            set(ion_ref_elts)
            - {Element(s) for s in chemsys}
            - {Element("H"), Element("O")}
        )
        for entry in ion_ref_entries:
            entry_elts = set(entry.composition.elements)
            # Ensure no OH chemsys or extraneous elements from ion references
            if not (
                entry_elts <= {Element("H"), Element("O")}
                or extra_elts.intersection(entry_elts)
            ):
                # Create new computed entry
                form_e = ion_ref_pd.get_form_energy(entry)  # type: ignore
                new_entry = ComputedEntry(
                    entry.composition, form_e, entry_id=entry.entry_id
                )
                pbx_entry = PourbaixEntry(new_entry)
                pbx_entries.append(pbx_entry)

        return pbx_entries

    @lru_cache
    def get_ion_reference_data(self) -> list[dict]:
        """Download aqueous ion reference data used in the construction of Pourbaix diagrams.

        Use this method to examine the ion reference data and to add additional
        ions if desired. The data returned from this method can be passed to
        get_ion_entries().

        Data are retrieved from the Aqueous Ion Reference Data project
        hosted on MPContribs. Refer to that project and its associated documentation
        for more details about the format and meaning of the data.

        Returns:
            [dict]: Among other data, each record contains 1) the experimental ion  free energy, 2) the
                formula of the reference solid for the ion, and 3) the experimental free energy of the
                reference solid. All energies are given in kJ/mol. An example is given below.

                {'identifier': 'Li[+]',
                'formula': 'Li[+]',
                'data': {'charge': {'display': '1.0', 'value': 1.0, 'unit': ''},
                'ΔGᶠ': {'display': '-293.71 kJ/mol', 'value': -293.71, 'unit': 'kJ/mol'},
                'MajElements': 'Li',
                'RefSolid': 'Li2O',
                'ΔGᶠRefSolid': {'display': '-561.2 kJ/mol',
                    'value': -561.2,
                    'unit': 'kJ/mol'},
                'reference': 'H. E. Barner and R. V. Scheuerman, Handbook of thermochemical data for
                compounds and aqueous species, Wiley, New York (1978)'}}
        """
        return self.contribs.query_contributions(  # type: ignore
            query={"project": "ion_ref_data"},
            fields=["identifier", "formula", "data"],
            paginate=True,
        ).get(
            "data"
        )  # type: ignore

    def get_ion_reference_data_for_chemsys(self, chemsys: str | list) -> list[dict]:
        """Download aqueous ion reference data used in the construction of Pourbaix diagrams.

        Use this method to examine the ion reference data and to add additional
        ions if desired. The data returned from this method can be passed to
        get_ion_entries().

        Data are retrieved from the Aqueous Ion Reference Data project
        hosted on MPContribs. Refer to that project and its associated documentation
        for more details about the format and meaning of the data.

        Args:
            chemsys (str or [str]): Chemical system string comprising element
                symbols separated by dashes, e.g., "Li-Fe-O" or List of element
                symbols, e.g., ["Li", "Fe", "O"].

        Returns:
            [dict]: Among other data, each record contains 1) the experimental ion  free energy, 2) the
                formula of the reference solid for the ion, and 3) the experimental free energy of the
                reference solid. All energies are given in kJ/mol. An example is given below.

                {'identifier': 'Li[+]',
                'formula': 'Li[+]',
                'data': {'charge': {'display': '1.0', 'value': 1.0, 'unit': ''},
                'ΔGᶠ': {'display': '-293.71 kJ/mol', 'value': -293.71, 'unit': 'kJ/mol'},
                'MajElements': 'Li',
                'RefSolid': 'Li2O',
                'ΔGᶠRefSolid': {'display': '-561.2 kJ/mol',
                    'value': -561.2,
                    'unit': 'kJ/mol'},
                'reference': 'H. E. Barner and R. V. Scheuerman, Handbook of thermochemical data for
                compounds and aqueous species, Wiley, New York (1978)'}}
        """
        ion_data = self.get_ion_reference_data()

        if isinstance(chemsys, str):
            chemsys = chemsys.split("-")
        return [d for d in ion_data if d["data"]["MajElements"] in chemsys]

    def get_ion_entries(
        self, pd: PhaseDiagram, ion_ref_data: list[dict] | None = None
    ) -> list[IonEntry]:
        """Retrieve IonEntry objects that can be used in the construction of
        Pourbaix Diagrams. The energies of the IonEntry are calculaterd from
        the solid energies in the provided Phase Diagram to be
        consistent with experimental free energies.

        NOTE! This is an advanced method that assumes detailed understanding
        of how to construct computational Pourbaix Diagrams. If you just want
        to build a Pourbaix Diagram using default settings, use get_pourbaix_entries.

        Args:
            pd: Solid phase diagram on which to construct IonEntry. Note that this
                Phase Diagram MUST include O and H in its chemical system. For example,
                to retrieve IonEntry for Ti, the phase diagram passed here should contain
                materials in the H-O-Ti chemical system. It is also assumed that solid
                energies have already been corrected with MaterialsProjectAqueousCompatibility,
                which is necessary for proper construction of Pourbaix diagrams.
            ion_ref_data: Aqueous ion reference data. If None (default), the data
                are downloaded from the Aqueous Ion Reference Data project hosted
                on MPContribs. To add a custom ionic species, first download
                data using get_ion_reference_data, then add or customize it with
                your additional data, and pass the customized list here.

        Returns:
            [IonEntry]: IonEntry are similar to PDEntry objects. Their energies
                are free energies in eV.
        """
        # determine the chemsys from the phase diagram
        chemsys = "-".join([el.symbol for el in pd.elements])

        # raise ValueError if O and H not in chemsys
        if "O" not in chemsys or "H" not in chemsys:
            raise ValueError(
                "The phase diagram chemical system must contain O and H! Your"
                f" diagram chemical system is {chemsys}."
            )

        if not ion_ref_data:
            ion_data = self.get_ion_reference_data_for_chemsys(chemsys)
        else:
            ion_data = ion_ref_data

        # position the ion energies relative to most stable reference state
        ion_entries = []
        for _, i_d in enumerate(ion_data):
            ion = Ion.from_formula(i_d["formula"])
            refs = [
                e
                for e in pd.all_entries
                if e.composition.reduced_formula == i_d["data"]["RefSolid"]
            ]
            if not refs:
                raise ValueError("Reference solid not contained in entry list")
            stable_ref = sorted(refs, key=lambda x: x.energy_per_atom)[0]
            rf = stable_ref.composition.get_reduced_composition_and_factor()[1]

            # TODO - need a more robust way to convert units
            # use pint here?
            if i_d["data"]["ΔGᶠRefSolid"]["unit"] == "kJ/mol":
                # convert to eV/formula unit
                ref_solid_energy = i_d["data"]["ΔGᶠRefSolid"]["value"] / 96.485
            elif i_d["data"]["ΔGᶠRefSolid"]["unit"] == "MJ/mol":
                # convert to eV/formula unit
                ref_solid_energy = i_d["data"]["ΔGᶠRefSolid"]["value"] / 96485
            else:
                raise ValueError(
                    f"Ion reference solid energy has incorrect unit {i_d['data']['ΔGᶠRefSolid']['unit']}"
                )
            solid_diff = pd.get_form_energy(stable_ref) - ref_solid_energy * rf
            elt = i_d["data"]["MajElements"]
            correction_factor = ion.composition[elt] / stable_ref.composition[elt]
            # TODO - need a more robust way to convert units
            # use pint here?
            if i_d["data"]["ΔGᶠ"]["unit"] == "kJ/mol":
                # convert to eV/formula unit
                ion_free_energy = i_d["data"]["ΔGᶠ"]["value"] / 96.485
            elif i_d["data"]["ΔGᶠ"]["unit"] == "MJ/mol":
                # convert to eV/formula unit
                ion_free_energy = i_d["data"]["ΔGᶠ"]["value"] / 96485
            else:
                raise ValueError(
                    f"Ion free energy has incorrect unit {i_d['data']['ΔGᶠ']['unit']}"
                )
            energy = ion_free_energy + solid_diff * correction_factor
            ion_entries.append(IonEntry(ion, energy))

        return ion_entries

    def get_entry_by_material_id(
        self,
        material_id: str,
        compatible_only: bool = True,
        inc_structure: bool | None = None,
        property_data: list[str] | None = None,
        conventional_unit_cell: bool = False,
    ):
        """Get all ComputedEntry objects corresponding to a material_id.

        Args:
            material_id (str): Materials Project material_id (a string,
                e.g., mp-1234).
            compatible_only (bool): Whether to return only "compatible"
                entries. Compatible entries are entries that have been
                processed using the MaterialsProject2020Compatibility class,
                which performs adjustments to allow mixing of GGA and GGA+U
                calculations for more accurate phase diagrams and reaction
                energies. This data is obtained from the core "thermo" API endpoint.
            inc_structure (str): *This is a deprecated argument*. Previously, if None, entries
                returned were ComputedEntries. If inc_structure="initial",
                ComputedStructureEntries with initial structures were returned.
                Otherwise, ComputedStructureEntries with final structures
                were returned. This is no longer needed as all entries will contain
                structure data by default.
            property_data (list): Specify additional properties to include in
                entry.data. If None, only default data is included. Should be a subset of
                input parameters in the 'MPRester.thermo.available_fields' list.
            conventional_unit_cell (bool): Whether to get the standard
                conventional unit cell
        Returns:
            List of ComputedEntry or ComputedStructureEntry object.
        """
        return self.get_entries(
            material_id,
            compatible_only=compatible_only,
            inc_structure=inc_structure,
            property_data=property_data,
            conventional_unit_cell=conventional_unit_cell,
        )

    def get_entries_in_chemsys(
        self,
        elements: str | list[str],
        use_gibbs: int | None = None,
        compatible_only: bool = True,
        inc_structure: bool | None = None,
        property_data: list[str] | None = None,
        conventional_unit_cell: bool = False,
        additional_criteria=None,
    ):
        """Helper method to get a list of ComputedEntries in a chemical system.
        For example, elements = ["Li", "Fe", "O"] will return a list of all
        entries in the parent Li-Fe-O chemical system, as well as all subsystems
        (i.e., all LixOy, FexOy, LixFey, LixFeyOz, Li, Fe and O phases). Extremely
        useful for creating phase diagrams of entire chemical systems.

        Note that by default this returns mixed GGA/GGA+U entries. For others,
        pass GGA/GGA+U/R2SCAN, or R2SCAN as thermo_types in additional_criteria.

        Args:
            elements (str or [str]): Parent chemical system string comprising element
                symbols separated by dashes, e.g., "Li-Fe-O" or List of element
                symbols, e.g., ["Li", "Fe", "O"].
            use_gibbs: If None (default), DFT energy is returned. If a number, return
                the free energy of formation estimated using a machine learning model
                (see GibbsComputedStructureEntry). The number is the temperature in
                Kelvin at which to estimate the free energy. Must be between 300 K and
                2000 K.
            compatible_only (bool): Whether to return only "compatible"
                entries. Compatible entries are entries that have been
                processed using the MaterialsProject2020Compatibility class,
                which performs adjustments to allow mixing of GGA and GGA+U
                calculations for more accurate phase diagrams and reaction
                energies. This data is obtained from the core "thermo" API endpoint.
            inc_structure (str): *This is a deprecated argument*. Previously, if None, entries
                returned were ComputedEntries. If inc_structure="initial",
                ComputedStructureEntries with initial structures were returned.
                Otherwise, ComputedStructureEntries with final structures
                were returned. This is no longer needed as all entries will contain
                structure data by default.
            property_data (list): Specify additional properties to include in
                entry.data. If None, only default data is included. Should be a subset of
                input parameters in the 'MPRester.thermo.available_fields' list.
            conventional_unit_cell (bool): Whether to get the standard
                conventional unit cell
            additional_criteria (dict): Any additional criteria to pass. The keys and values should
                correspond to proper function inputs to `MPRester.thermo.search`. For instance,
                if you are only interested in entries on the convex hull, you could pass
                {"energy_above_hull": (0.0, 0.0)} or {"is_stable": True}, or if you are only interested
                in entry data
        Returns:
            List of ComputedStructureEntries.
        """
        if isinstance(elements, str):
            elements = elements.split("-")

        elements_set = set(elements)  # remove duplicate elements

        all_chemsyses = []
        for i in range(len(elements_set)):
            for els in itertools.combinations(elements_set, i + 1):
                all_chemsyses.append("-".join(sorted(els)))

        entries = []

        entries.extend(
            self.get_entries(
                all_chemsyses,
                compatible_only=compatible_only,
                inc_structure=inc_structure,
                property_data=property_data,
                conventional_unit_cell=conventional_unit_cell,
                additional_criteria=additional_criteria
                or {"thermo_types": ["GGA_GGA+U"]},
            )
        )

        if not self.monty_decode:
            entries = [ComputedStructureEntry.from_dict(entry) for entry in entries]

        if use_gibbs:
            # replace the entries with GibbsComputedStructureEntry
            from pymatgen.entries.computed_entries import GibbsComputedStructureEntry

            entries = GibbsComputedStructureEntry.from_entries(entries, temp=use_gibbs)

            if not self.monty_decode:
                entries = [entry.as_dict() for entry in entries]

        return entries

    def get_bandstructure_by_material_id(
        self,
        material_id: str,
        path_type: BSPathType = BSPathType.setyawan_curtarolo,
        line_mode=True,
    ):
        """Get the band structure pymatgen object associated with a Materials Project ID.

        Arguments:
            material_id (str): Materials Project ID for a material
            path_type (BSPathType): k-point path selection convention
            line_mode (bool): Whether to return data for a line-mode calculation

        Returns:
            bandstructure (Union[BandStructure, BandStructureSymmLine]): BandStructure or BandStructureSymmLine object
        """
        return self.materials.electronic_structure_bandstructure.get_bandstructure_from_material_id(  # type: ignore
            material_id=material_id, path_type=path_type, line_mode=line_mode
        )

    def get_dos_by_material_id(self, material_id: str):
        """Get the complete density of states pymatgen object associated with a Materials Project ID.

        Arguments:
            material_id (str): Materials Project ID for a material

        Returns:
            dos (CompleteDos): CompleteDos object
        """
        return self.materials.electronic_structure_dos.get_dos_from_material_id(
            material_id=material_id
        )  # type: ignore

    def get_phonon_dos_by_material_id(self, material_id: str):
        """Get phonon density of states data corresponding to a material_id.

        Args:
            material_id (str): Materials Project material_id.

        Returns:
             CompletePhononDos: A phonon DOS object.

        """
        doc = self.materials.phonon.search(material_ids=material_id, fields=["ph_dos"])
        if not doc:
            return None
        return doc[0].ph_dos if self.use_document_model else doc[0]["ph_dos"]  # type: ignore

    def get_phonon_bandstructure_by_material_id(self, material_id: str):
        """Get phonon dispersion data corresponding to a material_id.

        Args:
            material_id (str): Materials Project material_id.

        Returns:
            PhononBandStructureSymmLine:  phonon band structure.
        """
        doc = self.materials.phonon.search(material_ids=material_id, fields=["ph_bs"])
        if not doc:
            return None

        return doc[0].ph_bs if self.use_document_model else doc[0]["ph_bs"]  # type: ignore

    def get_wulff_shape(self, material_id: str):
        """Constructs a Wulff shape for a material.

        Args:
            material_id (str): Materials Project material_id, e.g. 'mp-123'.


        Returns:
            pymatgen.analysis.wulff.WulffShape
        """
        from pymatgen.analysis.wulff import WulffShape
        from pymatgen.symmetry.analyzer import SpacegroupAnalyzer

        structure = self.get_structure_by_material_id(material_id)
        doc = self.materials.surface_properties.search(material_ids=material_id)

        if not doc:
            return None

        surfaces: list = (
            doc[0].surfaces if self.use_document_model else doc[0]["surfaces"]  # type: ignore
        )

        lattice = (
            SpacegroupAnalyzer(structure).get_conventional_standard_structure().lattice
        )
        miller_energy_map = {}
        for surf in surfaces:
            miller = tuple(surf.miller_index) if surf.miller_index else ()
            # Prefer reconstructed surfaces, which have lower surface energies.
            if (miller not in miller_energy_map) or surf.is_reconstructed:
                miller_energy_map[miller] = surf.surface_energy
        millers, energies = zip(*miller_energy_map.items())
        return WulffShape(lattice, millers, energies)

    def get_charge_density_from_task_id(
        self, task_id: str, inc_task_doc: bool = False
    ) -> Chgcar | tuple[Chgcar, TaskDoc | dict] | None:
        """Get charge density data for a given task_id.

        Arguments:
            task_id (str): A task id
            inc_task_doc (bool): Whether to include the task document in the returned data.

        Returns:
            (Chgcar, (Chgcar, TaskDoc | dict), None): Pymatgen Chgcar object, or tuple with object and TaskDoc
        """
        decoder = MontyDecoder().decode if self.monty_decode else json.loads
        kwargs = dict(
            bucket="materialsproject-parsed",
            key=f"chgcars/{str(task_id)}.json.gz",
            decoder=decoder,
        )
        chgcar = self.materials.tasks._query_open_data(**kwargs)[0]
        if not chgcar:
            raise MPRestError(f"No charge density fetched for task_id {task_id}.")

        chgcar = chgcar[0]["data"]  # type: ignore

        if inc_task_doc:
            task_doc = self.materials.tasks.search(task_ids=task_id)[0]
            return chgcar, task_doc

        return chgcar

    def get_charge_density_from_material_id(
        self, material_id: str, inc_task_doc: bool = False
    ) -> Chgcar | tuple[Chgcar, TaskDoc | dict] | None:
        """Get charge density data for a given Materials Project ID.

        Arguments:
            material_id (str): Material Project ID
            inc_task_doc (bool): Whether to include the task document in the returned data.

        Returns:
            (Chgcar, (Chgcar, TaskDoc | dict), None): Pymatgen Chgcar object, or tuple with object and TaskDoc
        """
        # TODO: really we want a recommended task_id for charge densities here
        # this could potentially introduce an ambiguity
        task_ids = self.get_task_ids_associated_with_material_id(
            material_id, calc_types=[CalcType.GGA_Static, CalcType.GGA_U_Static]
        )
        if not task_ids:
            return None

        results: list[TaskDoc] = self.materials.tasks.search(
            task_ids=task_ids, fields=["last_updated", "task_id"]
        )  # type: ignore

        if len(results) == 0:
            return None

        latest_doc = max(  # type: ignore
            results,
            key=lambda x: (
                x.last_updated  # type: ignore
                if self.use_document_model
                else x["last_updated"]
            ),  # type: ignore
        )
        task_id = (
            latest_doc.task_id if self.use_document_model else latest_doc["task_id"]
        )
        return self.get_charge_density_from_task_id(task_id, inc_task_doc)

    def get_download_info(self, material_ids, calc_types=None, file_patterns=None):
        """Get a list of URLs to retrieve raw VASP output files from the NoMaD repository
        Args:
            material_ids (list): list of material identifiers (mp-id's)
            task_types (list): list of task types to include in download (see CalcType Enum class)
            file_patterns (list): list of wildcard file names to include for each task
        Returns:
            a tuple of 1) a dictionary mapping material_ids to task_ids and
            calc_types, and 2) a list of URLs to download zip archives from
            NoMaD repository. Each zip archive will contain a manifest.json with
            metadata info, e.g. the task/external_ids that belong to a directory.
        """
        # task_id's correspond to NoMaD external_id's
        calc_types = (
            [t.value for t in calc_types if isinstance(t, CalcType)]
            if calc_types
            else []
        )

        meta = {}
        for doc in self.materials.search(  # type: ignore
            task_ids=material_ids,
            fields=["calc_types", "deprecated_tasks", "material_id"],
        ):
            doc_dict: dict = doc.model_dump() if self.use_document_model else doc  # type: ignore
            for task_id, calc_type in doc_dict["calc_types"].items():
                if calc_types and calc_type not in calc_types:
                    continue
                mp_id = doc_dict["material_id"]
                if meta.get(mp_id) is None:
                    meta[mp_id] = [{"task_id": task_id, "calc_type": calc_type}]
                else:
                    meta[mp_id].append({"task_id": task_id, "calc_type": calc_type})
        if not meta:
            raise ValueError(f"No tasks found for material id {material_ids}.")

        # return a list of URLs for NoMaD Downloads containing the list of files
        # for every external_id in `task_ids`
        # For reference, please visit https://nomad-lab.eu/prod/rae/api/

        # check if these task ids exist on NOMAD
        prefix = "https://nomad-lab.eu/prod/rae/api/repo/?"
        if file_patterns is not None:
            for file_pattern in file_patterns:
                prefix += f"file_pattern={file_pattern}&"
        prefix += "external_id="

        task_ids = [t["task_id"] for tl in meta.values() for t in tl]
        nomad_exist_task_ids = self._check_get_download_info_url_by_task_id(
            prefix=prefix, task_ids=task_ids
        )
        if len(nomad_exist_task_ids) != len(task_ids):
            self._print_help_message(
                nomad_exist_task_ids, task_ids, file_patterns, calc_types
            )

        # generate download links for those that exist
        prefix = "https://nomad-lab.eu/prod/rae/api/raw/query?"
        if file_patterns is not None:
            for file_pattern in file_patterns:
                prefix += f"file_pattern={file_pattern}&"
        prefix += "external_id="

        urls = [prefix + tids for tids in nomad_exist_task_ids]
        return meta, urls

    def _check_get_download_info_url_by_task_id(self, prefix, task_ids) -> list[str]:
        nomad_exist_task_ids: list[str] = []
        prefix = prefix.replace("/raw/query", "/repo/")
        for task_id in task_ids:
            url = prefix + task_id
            if self._check_nomad_exist(url):
                nomad_exist_task_ids.append(task_id)
        return nomad_exist_task_ids

    @staticmethod
    def _check_nomad_exist(url) -> bool:
        response = get(url=url)
        if response.status_code != 200:
            return False
        content = loads(response.text)
        if content["pagination"]["total"] == 0:
            return False
        return True

    @staticmethod
    def _print_help_message(nomad_exist_task_ids, task_ids, file_patterns, calc_types):
        non_exist_ids = set(task_ids) - set(nomad_exist_task_ids)
        warnings.warn(
            f"For file patterns [{file_patterns}] and calc_types [{calc_types}], \n"
            f"the following ids are not found on NOMAD [{list(non_exist_ids)}]. \n"
            f"If you need to upload them, please contact Patrick Huck at phuck@lbl.gov"
        )

    def query(*args, **kwargs):
        """The MPRester().query method has been replaced with the MPRester().summary.search method.
        Note this method also no longer supports direct MongoDB-type queries. For more information,
        please see the new documentation.
        """
        raise NotImplementedError(
            """
            The MPRester().query method has been replaced with the MPRester().summary.search method.
            Note this method also no longer supports direct MongoDB-type queries. For more information,
            please see the new documentation.
            """
        )

    def get_cohesive_energy(
        self,
        material_ids: list[MPID | str],
        normalization: Literal["atom", "formula_unit"] = "atom",
    ) -> float | dict[str, float]:
        """Obtain the cohesive energy of the structure(s) corresponding to multiple MPIDs.

        Args:
            material_ids ([MPID | str]) : List of MPIDs to compute cohesive energies.
            normalization (str = "atom" (default) or "formula_unit") :
                Whether to normalize the cohesive energy by the number of atoms (default)
                or by the number of formula units.
                Note that the current default is inconsistent with the legacy API.

        Returns:
            (dict[str,float]) : The cohesive energies (in eV/atom or eV/formula unit) for
            each material, indexed by MPID.
        """
        entry_preference = {
            k: i for i, k in enumerate(["GGA", "GGA_U", "SCAN", "R2SCAN"])
        }
        run_type_to_dfa = {"GGA": "PBE", "GGA_U": "PBE", "R2SCAN": "r2SCAN"}

        energies = {mp_id: {} for mp_id in material_ids}
        entries = self.get_entries(
            material_ids,
            compatible_only=False,
            inc_structure=True,
            property_data=None,
            conventional_unit_cell=False,
        )
        for entry in entries:
            # Ensure that this works with monty_decode = False and True
            if not self.monty_decode:
                entry["uncorrected_energy_per_atom"] = entry["energy"] / sum(
                    entry["composition"].values()
                )
            else:
                entry = {
                    "data": entry.data,
                    "uncorrected_energy_per_atom": entry.uncorrected_energy_per_atom,
                    "composition": entry.composition,
                }

            mp_id = entry["data"]["material_id"]
            if (run_type := entry["data"]["run_type"]) not in energies[mp_id]:
                energies[mp_id][run_type] = {
                    "total_energy_per_atom": float("inf"),
                    "composition": None,
                }

            # Obtain lowest total energy/atom within a given run type
            if (
                entry["uncorrected_energy_per_atom"]
                < energies[mp_id][run_type]["total_energy_per_atom"]
            ):
                energies[mp_id][run_type] = {
                    "total_energy_per_atom": entry["uncorrected_energy_per_atom"],
                    "composition": entry["composition"],
                }

        atomic_energies = self.get_atom_reference_data()

        e_coh_per_atom = {}
        for mp_id, entries in energies.items():
            if not entries:
                e_coh_per_atom[str(mp_id)] = None
                continue
            # take entry from most reliable and available functional
            prefered_func = sorted(list(entries), key=lambda k: entry_preference[k])[-1]
            e_coh_per_atom[str(mp_id)] = self._get_cohesive_energy(
                entries[prefered_func]["composition"],
                entries[prefered_func]["total_energy_per_atom"],
                atomic_energies[run_type_to_dfa.get(prefered_func, prefered_func)],
                normalization=normalization,
            )
        return e_coh_per_atom

    @lru_cache
    def get_atom_reference_data(
        self,
        funcs: tuple[str] = (
            "PBE",
            "SCAN",
            "r2SCAN",
        ),
    ) -> dict[str, dict[str, float]]:
        """Retrieve energies of isolated neutral atoms from MPContribs.

        Args:
            funcs ([str] or None) : list of functionals to retrieve data for.
            Defaults to all available functionals ("PBE", "SCAN", "r2SCAN")
            when set to None.

        Returns:
            (dict[str, dict[str, float]]) : dict containing isolated atom energies,
            indexed first by the functionals in funcs, and second by the atom.
        """
        _atomic_energies = self.contribs.query_contributions(
            query={"project": "isolated_atom_energies"},
            fields=["formula", *[f"data.{dfa}.energy" for dfa in funcs]],
        ).get("data")

        return {
            dfa: {
                entry["formula"]: entry["data"][dfa]["energy"]["value"]
                for entry in _atomic_energies
            }
            for dfa in funcs
        }

    @staticmethod
    def _get_cohesive_energy(
        composition: Composition | dict,
        energy_per_atom: float,
        atomic_energies: dict[str, float],
        normalization: Literal["atom", "formula_unit"] = "atom",
    ) -> float:
        """Obtain the cohesive energy of a given composition and energy.

        Args:
            composition (Composition or dict) : the composition of the structure.
            energy_per_atom (float) : the energy per atom of the structure.
            atomic_energies (dict[str,float]) : a dict containing reference total energies
                of neutral atoms.
            normalization (str = "atom" (default) or "formula_unit") :
                Whether to normalize the cohesive energy by the number of atoms (default)
                or by the number of formula units.

        Returns:
            (float) : the cohesive energy per atom.
        """
        comp = Composition(composition).remove_charges()
        atomic_energy = sum(
            coeff * atomic_energies[str(element)] for element, coeff in comp.items()
        )

        natom = sum(comp.values())
        if normalization == "atom":
            return energy_per_atom - atomic_energy / natom
        elif normalization == "formula_unit":
            num_form_unit = comp.get_reduced_composition_and_factor()[1]
            return (energy_per_atom * natom - atomic_energy) / num_form_unit