1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
import itertools
import os
import random
import importlib
import numpy as np
import pytest
from emmet.core.tasks import TaskDoc
from emmet.core.vasp.calc_types import CalcType
from pymatgen.analysis.phase_diagram import PhaseDiagram
from pymatgen.analysis.pourbaix_diagram import IonEntry, PourbaixDiagram, PourbaixEntry
from pymatgen.analysis.wulff import WulffShape
from pymatgen.core import SETTINGS
from pymatgen.core.ion import Ion
from pymatgen.core.periodic_table import Element
from pymatgen.electronic_structure.bandstructure import (
BandStructure,
BandStructureSymmLine,
)
from pymatgen.electronic_structure.dos import CompleteDos
from pymatgen.entries.compatibility import MaterialsProjectAqueousCompatibility
from pymatgen.entries.computed_entries import ComputedEntry, GibbsComputedStructureEntry
from pymatgen.io.cif import CifParser
from pymatgen.io.vasp import Chgcar
from pymatgen.phonon.bandstructure import PhononBandStructureSymmLine
from pymatgen.phonon.dos import PhononDos
from mp_api.client import MPRester
from mp_api.client.core.client import MPRestError
from mp_api.client.core.settings import MAPIClientSettings
@pytest.fixture()
def mpr():
rester = MPRester()
yield rester
rester.session.close()
@pytest.mark.skipif(os.getenv("MP_API_KEY", None) is None, reason="No API key found.")
class TestMPRester:
fake_mp_api_key = "12345678901234567890123456789012" # 32 chars
default_endpoint = "https://api.materialsproject.org/"
def test_get_structure_by_material_id(self, mpr):
s0 = mpr.get_structure_by_material_id("mp-149")
assert s0.formula == "Si2"
s1 = mpr.get_structure_by_material_id("mp-4163", conventional_unit_cell=True)
assert s1.formula == "Ca12 Ti8 O28"
s2 = mpr.get_structure_by_material_id("mp-149", final=False)
assert {s.formula for s in s2} == {"Si2"}
def test_get_database_version(self, mpr):
db_version = mpr.get_database_version()
assert db_version is not None
def test_get_material_id_from_task_id(self, mpr):
assert mpr.get_material_id_from_task_id("mp-540081") == "mp-19017"
def test_get_task_ids_associated_with_material_id(self, mpr):
results = mpr.get_task_ids_associated_with_material_id(
"mp-149", calc_types=[CalcType.GGA_Static, CalcType.GGA_U_Static]
)
assert len(results) > 0
def test_get_material_id_references(self, mpr):
data = mpr.get_material_id_references("mp-123")
assert len(data) > 5
def test_get_material_id_doc(self, mpr):
mp_ids = mpr.get_material_ids("Al2O3")
random.shuffle(mp_ids)
doc = mpr.materials.search(material_ids=mp_ids.pop(0))[0]
assert doc.formula_pretty == "Al2O3"
mp_ids = mpr.get_material_ids("Al-O")
random.shuffle(mp_ids)
doc = mpr.materials.search(material_ids=mp_ids.pop(0))[0]
assert doc.chemsys == "Al-O"
def test_get_structures(self, mpr):
structs = mpr.get_structures("Mn3O4")
assert len(structs) > 0
structs = mpr.get_structures("Mn-O", final=False)
assert len(structs) > 0
@pytest.mark.skip(reason="Endpoint issues")
def test_find_structure(self, mpr):
path = os.path.join(MAPIClientSettings().TEST_FILES, "Si_mp_149.cif")
with open(path) as file:
data = mpr.find_structure(path)
assert len(data) > 0
s = CifParser(file).get_structures()[0]
data = mpr.find_structure(s)
assert len(data) > 0
def test_get_bandstructure_by_material_id(self, mpr):
bs = mpr.get_bandstructure_by_material_id("mp-149")
assert isinstance(bs, BandStructureSymmLine)
bs_uniform = mpr.get_bandstructure_by_material_id("mp-149", line_mode=False)
assert isinstance(bs_uniform, BandStructure)
assert not isinstance(bs_uniform, BandStructureSymmLine)
def test_get_dos_by_id(self, mpr):
dos = mpr.get_dos_by_material_id("mp-149")
assert isinstance(dos, CompleteDos)
def test_get_entry_by_material_id(self, mpr):
e = mpr.get_entry_by_material_id("mp-19017")
assert isinstance(e[0], ComputedEntry)
assert e[0].composition.reduced_formula == "LiFePO4"
def test_get_entries(self, mpr):
syms = ["Li", "Fe", "O"]
chemsys = "Li-Fe-O"
entries = mpr.get_entries(chemsys)
elements = {Element(sym) for sym in syms}
for e in entries:
assert isinstance(e, ComputedEntry)
assert set(e.composition.elements).issubset(elements)
# Formula
formula = "SiO2"
entries = mpr.get_entries(formula)
for e in entries:
assert isinstance(e, ComputedEntry)
# Property data
formula = "BiFeO3"
entries = mpr.get_entries(formula, property_data=["energy_above_hull"])
for e in entries:
assert e.data.get("energy_above_hull", None) is not None
# Conventional structure
entry = mpr.get_entry_by_material_id("mp-22526", conventional_unit_cell=True)[1]
s = entry.structure
assert pytest.approx(s.lattice.a) == s.lattice.b
assert pytest.approx(s.lattice.a) != s.lattice.c
assert pytest.approx(s.lattice.alpha) == 90
assert pytest.approx(s.lattice.beta) == 90
assert pytest.approx(s.lattice.gamma) == 120
# Ensure energy per atom is same
prim = mpr.get_entry_by_material_id("mp-22526", conventional_unit_cell=False)[1]
s = prim.structure
assert pytest.approx(s.lattice.a) == s.lattice.b
assert pytest.approx(s.lattice.a, abs=1e-3) == s.lattice.c
assert pytest.approx(s.lattice.alpha, abs=1e-3) == s.lattice.beta
assert pytest.approx(s.lattice.alpha, abs=1e-3) == s.lattice.gamma
# Additional criteria
entry = mpr.get_entries(
"mp-149",
additional_criteria={"energy_above_hull": (0.0, 10)},
property_data=["energy_above_hull"],
)[0]
assert "energy_above_hull" in entry.data
entries = mpr.get_entries(
"mp-149",
additional_criteria={"energy_above_hull": (1, 10)},
property_data=["energy_above_hull"],
)
assert len(entries) == 0
def test_get_entries_in_chemsys(self, mpr):
syms = ["Li", "Fe", "O"]
syms2 = "Li-Fe-O"
entries = mpr.get_entries_in_chemsys(syms)
entries2 = mpr.get_entries_in_chemsys(syms2)
elements = {Element(sym) for sym in syms}
for e in entries:
assert isinstance(e, ComputedEntry)
assert set(e.composition.elements).issubset(elements)
e1 = {i.entry_id for i in entries}
e2 = {i.entry_id for i in entries2}
assert e1 == e2
gibbs_entries = mpr.get_entries_in_chemsys(syms2, use_gibbs=500)
for e in gibbs_entries:
assert isinstance(e, GibbsComputedStructureEntry)
@pytest.mark.skip(reason="SSL issues")
def test_get_pourbaix_entries(self, mpr):
# test input chemsys as a list of elements
pbx_entries = mpr.get_pourbaix_entries(["Fe", "Cr"])
for pbx_entry in pbx_entries:
assert isinstance(pbx_entry, PourbaixEntry)
# test input chemsys as a string
pbx_entries = mpr.get_pourbaix_entries("Fe-Cr")
for pbx_entry in pbx_entries:
assert isinstance(pbx_entry, PourbaixEntry)
# test use_gibbs kwarg
pbx_entries = mpr.get_pourbaix_entries("Li-O", use_gibbs=300)
for pbx_entry in pbx_entries:
assert isinstance(pbx_entry, PourbaixEntry)
# test solid_compat kwarg
with pytest.raises(ValueError, match="Solid compatibility can only be"):
mpr.get_pourbaix_entries("Ti-O", solid_compat=None)
# test removal of extra elements from reference solids
# Li-Zn-S has Na in reference solids
pbx_entries = mpr.get_pourbaix_entries("Li-Zn-S")
assert not any(e for e in pbx_entries if "Na" in e.composition)
# Ensure entries are pourbaix compatible
PourbaixDiagram(pbx_entries)
# TODO - old tests copied from pymatgen with specific energy values. Update or delete
# fe_two_plus = [e for e in pbx_entries if e.entry_id == "ion-0"][0]
# self.assertAlmostEqual(fe_two_plus.energy, -1.12369, places=3)
#
# feo2 = [e for e in pbx_entries if e.entry_id == "mp-25332"][0]
# self.assertAlmostEqual(feo2.energy, 3.56356, places=3)
#
# # Test S, which has Na in reference solids
# pbx_entries = self.rester.get_pourbaix_entries(["S"])
# so4_two_minus = pbx_entries[9]
# self.assertAlmostEqual(so4_two_minus.energy, 0.301511, places=3)
@pytest.mark.skip(reason="SSL issues")
def test_get_ion_entries(self, mpr):
entries = mpr.get_entries_in_chemsys("Ti-O-H")
pd = PhaseDiagram(entries)
ion_entry_data = mpr.get_ion_reference_data_for_chemsys("Ti-O-H")
ion_entries = mpr.get_ion_entries(pd, ion_entry_data)
assert len(ion_entries) == 5
assert all([isinstance(i, IonEntry) for i in ion_entries])
bi_v_entry_data = mpr.get_ion_reference_data_for_chemsys("Bi-V")
bi_data = mpr.get_ion_reference_data_for_chemsys("Bi")
v_data = mpr.get_ion_reference_data_for_chemsys("V")
assert len(bi_v_entry_data) == len(bi_data) + v_data
# test an incomplete phase diagram
entries = mpr.get_entries_in_chemsys("Ti-O")
pd = PhaseDiagram(entries)
with pytest.raises(ValueError, match="The phase diagram chemical system"):
mpr.get_ion_entries(pd)
# test ion energy calculation
ion_data = mpr.get_ion_reference_data_for_chemsys("S")
ion_ref_comps = [
Ion.from_formula(d["data"]["RefSolid"]).composition for d in ion_data
]
ion_ref_elts = set(
itertools.chain.from_iterable(i.elements for i in ion_ref_comps)
)
ion_ref_entries = mpr.get_entries_in_chemsys(
[*map(str, ion_ref_elts), "O", "H"]
)
mpc = MaterialsProjectAqueousCompatibility()
ion_ref_entries = mpc.process_entries(ion_ref_entries)
ion_ref_pd = PhaseDiagram(ion_ref_entries)
ion_entries = mpr.get_ion_entries(ion_ref_pd, ion_ref_data=ion_data)
# In ion ref data, SO4-2 is -744.27 kJ/mol; ref solid is -1,279.0 kJ/mol
# so the ion entry should have an energy (-744.27 +1279) = 534.73 kJ/mol
# or 5.542 eV/f.u. above the energy of Na2SO4
so4_two_minus = [e for e in ion_entries if e.ion.reduced_formula == "SO4[-2]"][
0
]
# the ref solid is Na2SO4, ground state mp-4770
# the rf factor correction is necessary to make sure the composition
# of the reference solid is normalized to a single formula unit
ref_solid_entry = [e for e in ion_ref_entries if e.entry_id == "mp-4770"][0]
rf = ref_solid_entry.composition.get_reduced_composition_and_factor()[1]
solid_energy = ion_ref_pd.get_form_energy(ref_solid_entry) / rf
assert np.allclose(so4_two_minus.energy, solid_energy + 5.542, atol=1e-3)
def test_get_phonon_data_by_material_id(self, mpr):
bs = mpr.get_phonon_bandstructure_by_material_id("mp-2172")
assert isinstance(bs, PhononBandStructureSymmLine)
dos = mpr.get_phonon_dos_by_material_id("mp-2172")
assert isinstance(dos, PhononDos)
def test_get_charge_density_from_material_id(self, mpr):
chgcar = mpr.get_charge_density_from_material_id("mp-149")
assert isinstance(chgcar, Chgcar)
chgcar, task_doc = mpr.get_charge_density_from_material_id(
"mp-149", inc_task_doc=True
)
assert isinstance(chgcar, Chgcar)
assert isinstance(task_doc, TaskDoc)
def test_get_charge_density_from_task_id(self, mpr):
chgcar = mpr.get_charge_density_from_task_id("mp-2246557")
assert isinstance(chgcar, Chgcar)
chgcar, task_doc = mpr.get_charge_density_from_task_id(
"mp-2246557", inc_task_doc=True
)
assert isinstance(chgcar, Chgcar)
assert isinstance(task_doc, TaskDoc)
def test_get_wulff_shape(self, mpr):
ws = mpr.get_wulff_shape("mp-126")
assert isinstance(ws, WulffShape)
def test_large_list(self, mpr):
mpids = [
str(doc.material_id)
for doc in mpr.summary.search(
chunk_size=1000, num_chunks=10, fields=["material_id"]
)
]
docs = mpr.summary.search(material_ids=mpids, fields=["material_id"])
assert len(docs) == 10000
def test_get_api_key_endpoint_from_env_var(self, monkeypatch: pytest.MonkeyPatch):
"""Ensure the MP_API_KEY and MP_API_ENDPOINT from environment variable
is retrieved at runtime, not import time.
"""
# Mock an invalid key and endpoint set before import MPRester
import mp_api.client
monkeypatch.setenv("MP_API_ENDPOINT", "INVALID ENDPOINT")
monkeypatch.setenv("MP_API_KEY", "INVALID KEY")
importlib.reload(mp_api.client)
from mp_api.client import MPRester
monkeypatch.setenv("MP_API_KEY", self.fake_mp_api_key)
monkeypatch.setenv("MP_API_ENDPOINT", self.default_endpoint)
assert MPRester().api_key == self.fake_mp_api_key
assert MPRester().endpoint == self.default_endpoint
def test_get_api_key_endpoint_from_settings(self, monkeypatch: pytest.MonkeyPatch):
"""Test environment variable "MP_API_KEY" is not set and
get "PMG_MAPI_KEY" from "SETTINGS".
"""
monkeypatch.delenv("MP_API_KEY", raising=False)
# patch pymatgen.core.SETTINGS to contain PMG_MAPI_KEY
monkeypatch.setitem(SETTINGS, "PMG_MAPI_KEY", self.fake_mp_api_key)
assert MPRester().api_key == self.fake_mp_api_key
def test_get_default_api_key_endpoint(self, monkeypatch: pytest.MonkeyPatch):
monkeypatch.delenv("MP_API_ENDPOINT", raising=False)
assert MPRester().endpoint == self.default_endpoint
monkeypatch.delenv("MP_API_KEY", raising=False)
with pytest.raises(MPRestError, match="No API key found in request"):
MPRester().get_structure_by_material_id("mp-149")
def test_invalid_api_key(self, monkeypatch):
monkeypatch.setenv("MP_API_KEY", "INVALID")
with pytest.raises(ValueError, match="Keys for the new API are 32 characters"):
MPRester().get_structure_by_material_id("mp-149")
def test_get_cohesive_energy_per_atom_utility(self):
composition = {
"H": 5,
"V": 2,
"P": 3,
}
toten_per_atom = -2.0e3
atomic_energies = {"H": -13.6, "V": -7.2, "P": -0.1}
by_hand_e_coh = toten_per_atom - sum(
atomic_energies[k] * v for k, v in composition.items()
) / sum(composition.values())
assert MPRester._get_cohesive_energy(
composition, toten_per_atom, atomic_energies
) == pytest.approx(by_hand_e_coh)
def test_get_atom_references(self, mpr):
ae = mpr.get_atom_reference_data(funcs=("PBE",))
assert list(ae) == ["PBE"]
assert len(ae["PBE"]) == 89
assert all(isinstance(v, float) for v in ae["PBE"].values())
ae = mpr.get_atom_reference_data()
assert set(ae) == {"PBE", "r2SCAN", "SCAN"}
assert all(len(entries) == 89 for entries in ae.values())
assert all(
isinstance(v, float) for entries in ae.values() for v in entries.values()
)
def test_get_cohesive_energy(self):
ref_e_coh = {
"atom": {
"mp-123": -4.029208982500002,
"mp-149": -4.669184594999999,
"mp-4163": -6.351402620416668,
"mp-19017": -4.933409960714286,
},
"formula_unit": {
"mp-123": -4.029208982500002,
"mp-149": -4.669184594999999,
"mp-4163": -76.21683144500001,
"mp-19017": -34.533869725,
},
}
e_coh = {}
for monty_decode in (True, False):
with MPRester(
use_document_model=monty_decode, monty_decode=monty_decode
) as _mpr:
for norm, refs in ref_e_coh.items():
_e_coh = _mpr.get_cohesive_energy(list(refs), normalization=norm)
if norm == "atom":
e_coh["serial" if monty_decode else "noserial"] = _e_coh.copy()
# Ensure energies match reference data
assert all(v == pytest.approx(refs[k]) for k, v in _e_coh.items())
# Ensure energies are the same regardless of serialization
assert all(
v == pytest.approx(e_coh["noserial"][k]) for k, v in e_coh["serial"].items()
)
|