1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2010.
# SMHI,
# Folkborgsvägen 1,
# Norrköping,
# Sweden
# Author(s):
# Martin Raspaud <martin.raspaud@smhi.se>
# Adam Dybbroe <adam.dybbroe@smhi.se>
# This file is part of mpop.
# mpop is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# mpop is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with
# mpop. If not, see <http://www.gnu.org/licenses/>.
"""This modules describes the modis instrument.
It provides MODIS specific methods for RGB-compositing.
"""
import numpy as np
import mpop.imageo.geo_image as geo_image
from mpop.instruments.visir import VisirCompositer
from mpop.logger import LOG
MODIS = [["8", (0.405, 0.4125, 0.420), 1000],
["9", (0.438, 0.443, 0.488), 1000],
["3", (0.459, 0.469, 0.479), 1000],
["10", (0.483, 0.488, 0.493), 1000],
["11", (0.526, 0.531, 0.536), 1000],
["12", (0.546, 0.551, 0.556), 1000],
["4", (0.545, 0.555, 0.565), 1000],
["1", (0.620, 0.645, 0.670), 1000],
["13", (0.662, 0.667, 0.672), 1000]
]
# MODIS
#
class ModisCompositer(VisirCompositer):
"""This class sets up the Modis channel list and
instrument specific composite methods.
"""
channel_list = MODIS
instrument_name = "modis"
def truecolor(self):
"""Make a daytime true color RGB composite from Modis channels.
"""
self.check_channels(0.645, 0.555, 0.469)
ch1 = self[0.645].data / 100.
ch2 = self[0.555].data / 100.
ch3 = self[0.469].data / 100.
img = geo_image.GeoImage((ch1, ch2, ch3),
self.area,
self.time_slot,
fill_value = None,
mode="RGB")
img.enhance(stretch="histogram")
return img
truecolor.prerequisites = set([0.645, 0.555, 0.469])
|