File: nc_reader.py

package info (click to toggle)
python-mpop 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,516 kB
  • ctags: 1,877
  • sloc: python: 15,374; xml: 820; makefile: 90; sh: 8
file content (472 lines) | stat: -rw-r--r-- 17,791 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2010, 2011, 2012.

# SMHI,
# Folkborgsvägen 1,
# Norrköping, 
# Sweden

# Author(s):
 
#   Martin Raspaud <martin.raspaud@smhi.se>
#   Adam Dybbroe <adam.dybbroe@smhi.se>

# This file is part of mpop.

# mpop is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.

# mpop is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.

# You should have received a copy of the GNU General Public License along with
# mpop.  If not, see <http://www.gnu.org/licenses/>.
"""Very simple netcdf reader for mpop.
"""

# TODO
# - complete projection list and attribute list
# - handle other units than "m" for coordinates
# - handle units for data
# - pluginize
import warnings
from ConfigParser import NoSectionError

import numpy as np
from netCDF4 import Dataset, num2date

from mpop.instruments.visir import VisirCompositer
from mpop.satellites import GenericFactory
from mpop.satout.cfscene import TIME_UNITS
from mpop.utils import get_logger


LOG = get_logger("netcdf4/cf reader")

# To be complete, get from appendix F of cf conventions
MAPPING_ATTRIBUTES = {'grid_mapping_name': "proj",
                      'standard_parallel': ["lat_1", "lat_2"],
                      'latitude_of_projection_origin': "lat_0",
                      'longitude_of_projection_origin': "lon_0",
                      'longitude_of_central_meridian': "lon_0",
                      'perspective_point_height': "h",
                      'false_easting': "x_0",
                      'false_northing': "y_0",
                      'semi_major_axis': "a",
                      'semi_minor_axis': "b",
                      'inverse_flattening': "rf",
                      'ellipsoid': "ellps", # not in CF conventions...
                      }

# To be completed, get from appendix F of cf conventions
PROJNAME = {"vertical_perspective": "nsper",
            "geostationary": "geos",
            "albers_conical_equal_area": "aea",
            "azimuthal_equidistant": "aeqd",
            
    }

def _load02(filename):
    """Load data from a netcdf4 file, cf-satellite v0.2 (2012-02-03).
    """

    
    rootgrp = Dataset(filename, 'r')
    
    # processed variables
    processed = set()

    satellite_name, satellite_number = rootgrp.platform.rsplit("-", 1)

    time_slot = rootgrp.variables["time"].getValue()[0]
    time_slot = num2date(time_slot, TIME_UNITS)

    processed |= set(["time"])



    try:
        service = str(rootgrp.service)
    except AttributeError:
        service = ""

    instrument_name = str(rootgrp.instrument)

    try:
        orbit = str(rootgrp.orbit)
    except AttributeError:
        orbit = None

    try:
        scene = GenericFactory.create_scene(satellite_name,
                                            satellite_number,
                                            instrument_name,
                                            time_slot,
                                            orbit,
                                            None,
                                            service)
    except NoSectionError:
        scene = VisirCompositer(time_slot=time_slot)
        scene.satname = satellite_name
        scene.number = satellite_number
        scene.service = service

    dim_chart = {}

    for var_name, var in rootgrp.variables.items():
        varname = None
        try:
            varname = var.standard_name
        except AttributeError:
            try:
                varname = var.long_name
            except AttributeError:
                pass

        if varname in ["band_data", "Band data"]:
            LOG.debug("Found some data: " + var_name)
            dims = var.dimensions

            for dim in dims:
                dim_chart[dim] = var_name

            for cnt, dim in enumerate(dims):
                if dim.startswith("band"):
                    break

            data = var
            data.set_auto_maskandscale(False)
                
            area = None
            try:
                area_var_name = getattr(var,"grid_mapping")
                area_var = rootgrp.variables[area_var_name]
                proj4_dict = {}
                for attr, projattr in MAPPING_ATTRIBUTES.items():
                    try: 
                        the_attr = getattr(area_var, attr)
                        if projattr == "proj":
                            proj4_dict[projattr] = PROJNAME[the_attr]
                        elif(isinstance(projattr, (list, tuple))):
                            try:
                                for i, subattr in enumerate(the_attr):
                                    proj4_dict[projattr[i]] = subattr
                            except TypeError:
                                proj4_dict[projattr[0]] = the_attr
                        else:
                            proj4_dict[projattr] = the_attr
                    except AttributeError:
                        pass
                y_name, x_name = dims[:cnt] + dims[cnt + 1:]
                x__ = rootgrp.variables[x_name][:]
                y__ = rootgrp.variables[y_name][:]

                if proj4_dict["proj"] == "geos":
                    x__ *= proj4_dict["h"]
                    y__ *= proj4_dict["h"]

                x_pixel_size = abs((np.diff(x__)).mean())
                y_pixel_size = abs((np.diff(y__)).mean())

                llx = x__[0] - x_pixel_size / 2.0
                lly = y__[-1] - y_pixel_size / 2.0
                urx = x__[-1] + x_pixel_size / 2.0
                ury = y__[0] + y_pixel_size / 2.0

                area_extent = (llx, lly, urx, ury)

                try:
                    # create the pyresample areadef
                    from pyresample.geometry import AreaDefinition
                    area = AreaDefinition("myareaid", "myareaname",
                                          "myprojid", proj4_dict,
                                          len(x__), len(y__),
                                          area_extent)

                except ImportError:
                    LOG.warning("Pyresample not found, "
                                "cannot load area descrition")
                processed |= set([area_var_name, x_name, y_name])
                LOG.debug("Grid mapping found and used.")
            except AttributeError:
                LOG.debug("No grid mapping found.")
                
            try:
                area_var = getattr(var,"coordinates")
                coordinates_vars = area_var.split(" ")
                lons = None
                lats = None
                for coord_var_name in coordinates_vars:
                    coord_var = rootgrp.variables[coord_var_name]
                    units = getattr(coord_var, "units")
                    if(coord_var_name.lower().startswith("lon") or
                       units.lower().endswith("east") or 
                       units.lower().endswith("west")):
                        lons = coord_var[:]
                    elif(coord_var_name.lower().startswith("lat") or
                         units.lower().endswith("north") or 
                         units.lower().endswith("south")):
                        lats = coord_var[:]
                if lons and lats:
                    try:
                        from pyresample.geometry import SwathDefinition
                        area = SwathDefinition(lons=lons, lats=lats)

                    except ImportError:
                        LOG.warning("Pyresample not found, "
                                    "cannot load area descrition")
                
                processed |= set(coordinates_vars)
                LOG.debug("Lon/lat found and used.")
            except AttributeError:
                LOG.debug("No lon/lat found.")         
            
            names = rootgrp.variables[dim][:]
            scales = data.scale_factor
            offsets = data.add_offset
            if len(names) == 1:
                scales = np.array([scales])
                offsets = np.array([offsets])
            print scales, offsets
            for nbr, name in enumerate(names):
                try:
                    if cnt == 0:
                        chn_data = data[nbr, :, :].squeeze()
                    if cnt == 1:
                        chn_data = data[:, nbr, :].squeeze()
                    if cnt == 2:
                        chn_data = data[:, :, nbr].squeeze()
                    scene[name] = (np.ma.masked_equal(chn_data, data._FillValue)
                                   * scales[nbr] + offsets[nbr])

                    scene[name].info["units"] = var.units
                except KeyError:
                    from mpop.channel import Channel
                    scene.channels.append(Channel(name))
                
                if area is not None:
                    scene[name].area = area

            processed |= set([var_name, dim])

    non_processed = set(rootgrp.variables.keys()) - processed

    for var_name in non_processed:
        var = rootgrp.variables[var_name]
        if not (hasattr(var, "standard_name") or
                hasattr(var, "long_name")):
            LOG.info("Delayed processing of " + var_name)
            continue

        dims = var.dimensions
        if len(dims) != 1:
            LOG.info("Don't know what to do with " + var_name)
            continue

        dim = dims[0]
        if var.standard_name == "radiation_wavelength":
        
            names = rootgrp.variables[dim][:]
            for nbr, name in enumerate(names):
                scene[name].wavelength_range[1] = var[nbr]
            try:
                bnds = rootgrp.variables[var.bounds][:]
                for nbr, name in enumerate(names):
                    scene[name].wavelength_range[0] = bnds[nbr, 0]
                    scene[name].wavelength_range[2] = bnds[nbr, 1]
                processed |= set([var.bounds])
            except AttributeError:
                pass

            processed |= set([var_name])


    
    non_processed = set(rootgrp.variables.keys()) - processed
    if len(non_processed) > 0:
        LOG.warning("Remaining non-processed variables: " + str(non_processed))
        
    return scene
    
def load_from_nc4(filename):
    """Load data from a netcdf4 file, cf-satellite v0.1
    """

    rootgrp = Dataset(filename, 'r')

    try:
        rootgrp.satellite_number
        warnings.warn("You are loading old style netcdf files...", DeprecationWarning)
    except AttributeError:
        return _load02(filename)
    

    if not isinstance(rootgrp.satellite_number, str):
        satellite_number = "%02d" % rootgrp.satellite_number
    else:
        satellite_number = str(rootgrp.satellite_number)

    time_slot = rootgrp.variables["time"].getValue()[0]

    time_slot = num2date(time_slot, TIME_UNITS)

    service = str(rootgrp.service)

    satellite_name = str(rootgrp.satellite_name)
    instrument_name = str(rootgrp.instrument_name)

    try:
        orbit = str(rootgrp.orbit)
    except AttributeError:
        orbit = None

    try:
        scene = GenericFactory.create_scene(satellite_name,
                                            satellite_number,
                                            instrument_name,
                                            time_slot,
                                            orbit,
                                            None,
                                            service)
    except NoSectionError:
        scene = VisirCompositer(time_slot=time_slot)
        scene.satname = satellite_name
        scene.number = satellite_number
        scene.service = service


    for var_name, var in rootgrp.variables.items():
        area = None

        if var_name.startswith("band_data"):
            resolution = var.resolution
            str_res = str(int(resolution)) + "m"
            
            names = rootgrp.variables["bandname"+str_res][:]

            data = var[:, :, :].astype(var.dtype)

            data = np.ma.masked_outside(data,
                                        var.valid_range[0],
                                        var.valid_range[1])

            try:
                area_var = getattr(var,"grid_mapping")
                area_var = rootgrp.variables[area_var]
                proj4_dict = {}
                for attr, projattr in MAPPING_ATTRIBUTES.items():
                    try: 
                        the_attr = getattr(area_var, attr)
                        if projattr == "proj":
                            proj4_dict[projattr] = PROJNAME[the_attr]
                        elif(isinstance(projattr, (list, tuple))):
                            try:
                                for i, subattr in enumerate(the_attr):
                                    proj4_dict[projattr[i]] = subattr
                            except TypeError:
                                proj4_dict[projattr[0]] = the_attr
                        else:
                            proj4_dict[projattr] = the_attr
                    except AttributeError:
                        pass

                x__ = rootgrp.variables["x"+str_res][:]
                y__ = rootgrp.variables["y"+str_res][:]

                x_pixel_size = abs((x__[1] - x__[0]))
                y_pixel_size = abs((y__[1] - y__[0]))

                llx = x__[0] - x_pixel_size / 2.0
                lly = y__[-1] - y_pixel_size / 2.0
                urx = x__[-1] + x_pixel_size / 2.0
                ury = y__[0] + y_pixel_size / 2.0

                area_extent = (llx, lly, urx, ury)

                try:
                    # create the pyresample areadef
                    from pyresample.geometry import AreaDefinition
                    area = AreaDefinition("myareaid", "myareaname",
                                          "myprojid", proj4_dict,
                                          data.shape[1], data.shape[0],
                                          area_extent)

                except ImportError:
                    LOG.warning("Pyresample not found, "
                                "cannot load area descrition")

            except AttributeError:
                LOG.debug("No grid mapping found.")
                
            try:
                area_var = getattr(var,"coordinates")
                coordinates_vars = area_var.split(" ")
                lons = None
                lats = None
                for coord_var_name in coordinates_vars:
                    coord_var = rootgrp.variables[coord_var_name]
                    units = getattr(coord_var, "units")
                    if(coord_var_name.lower().startswith("lon") or
                       units.lower().endswith("east") or 
                       units.lower().endswith("west")):
                        lons = coord_var[:]
                    elif(coord_var_name.lower().startswith("lat") or
                         units.lower().endswith("north") or 
                         units.lower().endswith("south")):
                        lats = coord_var[:]
                if lons and lats:
                    try:
                        from pyresample.geometry import SwathDefinition
                        area = SwathDefinition(lons=lons, lats=lats)

                    except ImportError:
                        LOG.warning("Pyresample not found, "
                                    "cannot load area descrition")
                
            except AttributeError:
                LOG.debug("No lon/lat found.")
            
            for i, name in enumerate(names):
                if var.dimensions[0].startswith("band"):
                    chn_data = data[i, :, :]
                elif var.dimensions[1].startswith("band"):
                    chn_data = data[:, i, :]
                elif var.dimensions[2].startswith("band"):
                    chn_data = data[:, :, i]
                else:
                    raise ValueError("Invalid dimension names for band data")
                try:
                    scene[name] = (chn_data *
                                   rootgrp.variables["scale"+str_res][i] +
                                   rootgrp.variables["offset"+str_res][i])
                    #FIXME complete this
                    #scene[name].info
                except KeyError:
                    # build the channel on the fly

                    from mpop.channel import Channel
                    wv_var = rootgrp.variables["nominal_wavelength"+str_res]
                    wb_var = rootgrp.variables[getattr(wv_var, "bounds")]
                    minmax = wb_var[i]
                    scene.channels.append(Channel(name,
                                                  resolution,
                                                  (minmax[0],
                                                   wv_var[i][0],
                                                   minmax[1])))
                    scene[name] = (chn_data *
                                   rootgrp.variables["scale"+str_res][i] +
                                   rootgrp.variables["offset"+str_res][i])
                    
                if area is not None:
                    scene[name].area = area
        area = None

    for attr in rootgrp.ncattrs():
        scene.info[attr] = getattr(rootgrp, attr)
    scene.add_to_history("Loaded from netcdf4/cf by mpop")

    return scene