File: cfscene.py

package info (click to toggle)
python-mpop 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,516 kB
  • ctags: 1,877
  • sloc: python: 15,374; xml: 820; makefile: 90; sh: 8
file content (540 lines) | stat: -rw-r--r-- 21,553 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2010, 2011, 2012.

# Author(s):
 
#   Kristian Rune Larssen <krl@dmi.dk>
#   Adam Dybbroe <adam.dybbroe@smhi.se>
#   Martin Raspaud <martin.raspaud@smhi.se>
#   Esben S. Nielsen <esn@dmi.dk>

# This file is part of mpop.

# mpop is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.

# mpop is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.

# You should have received a copy of the GNU General Public License along with
# mpop.  If not, see <http://www.gnu.org/licenses/>.

"""The :mod:`satout.cfscene` module provide a proxy class and utilites for
conversion of mpop scene to cf conventions.
"""

import numpy as np
import numpy.ma as ma
from netCDF4 import date2num

from mpop.channel import Channel

import logging
LOG = logging.getLogger('cfscene')


#CF_DATA_TYPE = np.int16
CF_FLOAT_TYPE = np.float64
TIME_UNITS = "seconds since 1970-01-01 00:00:00"

class InfoObject(object):
    """Simple data and info container.
    """
    info = {}
    data = None

class CFScene(object):
    """Scene proxy class for cf conventions. The constructor should be called
    with the *scene* to transform as argument.
    """
    info = {}
    
    def __init__(self, scene, dtype=np.int16, band_axis=2):
        if not issubclass(dtype, np.integer):
            raise TypeError('Only integer saving allowed for CF data')
        
        self.info = scene.info.copy()
        CF_DATA_TYPE = dtype
        
        # Other global attributes
        self.info["Conventions"] = "CF-1.5"
        self.info["platform"] = scene.satname + "-" + str(scene.number)
        self.info["instrument"] = scene.instrument_name
        if scene.variant:
            self.info["service"] = scene.variant
        
        self.time = InfoObject()
        self.time.data = date2num(scene.time_slot,
                                  TIME_UNITS)
        self.time.info = {"var_name": "time",
                          "var_data": self.time.data,
                          "var_dim_names": (),
                          "long_name": "Nominal time of the image",
                          "standard_name": "time",
                          "units": TIME_UNITS} 

        grid_mappings = []
        areas = []
        area = None
        area_units = []
        counter = 0
        gm_counter = 0
        area_counter = 0
        
        for chn in scene:

            if not chn.is_loaded():
                continue
            
            if not isinstance(chn, Channel):
                setattr(self, chn.name, chn)
                continue

            fill_value = np.iinfo(CF_DATA_TYPE).min
            if ma.count_masked(chn.data) == chn.data.size:
                # All data is masked
                data = np.ones(chn.data.shape, dtype=CF_DATA_TYPE) * fill_value
                scale = 1
                offset = 0
            else:
                chn_max = chn.data.max()
                chn_min = chn.data.min()
               
                scale = ((chn_max - chn_min) /
                         (2**np.iinfo(CF_DATA_TYPE).bits - 2.0))
                # Handle the case where all data has the same value.
                if scale == 0:
                    scale = 1
                if np.iinfo(CF_DATA_TYPE).kind == 'i':
                    # Signed data type
                    offset = (chn_max + chn_min) / 2.0
                else: # Unsigned data type
                    offset = chn_min - scale                    
                
                if isinstance(chn.data, np.ma.MaskedArray):
                    data = ((chn.data.data - offset) / scale).astype(CF_DATA_TYPE)
                    data[chn.data.mask] = fill_value
                else:
                    data = ((chn.data - offset) / scale).astype(CF_DATA_TYPE)

            data = np.ma.expand_dims(data, band_axis)
            
            # it's a grid mapping
            try:
                if chn.area.proj_dict not in grid_mappings:
                    # create new grid mapping
                    grid_mappings.append(chn.area.proj_dict)
                    area = InfoObject()
                    area.data = 0
                    area.info = {"var_name": "grid_mapping_" + str(gm_counter),
                                 "var_data": area.data,
                                 "var_dim_names": ()}
                    area.info.update(proj2cf(chn.area.proj_dict))
                    area.info.setdefault("units", "m")
                    setattr(self, area.info["var_name"], area)
                    gm_counter += 1
                else:
                    # use an existing grid mapping
                    str_gmc = str(grid_mappings.index(chn.area.proj_dict))
                    area = InfoObject()
                    area.data = 0
                    area.info = {"var_name": "grid_mapping_" + str_gmc,
                                 "var_data": area.data,
                                 "var_dim_names": ()}
                    area.info.update(proj2cf(chn.area.proj_dict))
                    area.info.setdefault("units", "m")

                if(chn.area in areas):
                    str_arc = str(areas.index(chn.area))
                    xy_names = ["y"+str_arc, "x"+str_arc]
                else:
                    areas.append(chn.area)
                    str_arc = str(area_counter)
                    area_counter += 1
                    x__ = InfoObject()
                    x__.data = chn.area.projection_x_coords[0, :]
                    x__.info = {"var_name": "x"+str_arc,
                                "var_data": x__.data,
                                "var_dim_names": ("x"+str_arc,),
                                "units": "rad",
                                "standard_name": "projection_x_coordinate",
                                "long_name": "x coordinate of projection"}
                    if area.info["grid_mapping_name"] == "geostationary":
                        x__.data /= float(area.info["perspective_point_height"])
                        xpix = np.arange(len(x__.data), dtype=np.uint16)
                        xsca = ((x__.data[-1] - x__.data[0]) /
                            (xpix[-1] + xpix[0]))
                        xoff = x__.data[0] - xpix[0] * xsca
                        x__.data = xpix
                        x__.info["var_data"] = xpix
                        x__.info["scale_factor"] = xsca
                        x__.info["add_offset"] = xoff
                    setattr(self, x__.info["var_name"], x__)

                    y__ = InfoObject()
                    y__.data = chn.area.projection_y_coords[:, 0]
                    y__.info = {"var_name": "y"+str_arc,
                                "var_data": y__.data,
                                "var_dim_names": ("y"+str_arc,),
                                "units": "rad",
                                "standard_name": "projection_y_coordinate",
                                "long_name": "y coordinate of projection"}
                    if area.info["grid_mapping_name"] == "geostationary":
                        y__.data /= float(area.info["perspective_point_height"])
                        ypix = np.arange(len(y__.data), dtype=np.uint16)
                        ysca = ((y__.data[-1] - y__.data[0]) /
                            (ypix[-1] + ypix[0]))
                        yoff = y__.data[0] - ypix[0] * ysca
                        y__.data = ypix
                        y__.info["var_data"] = ypix
                        y__.info["scale_factor"] = ysca
                        y__.info["add_offset"] = yoff
                    setattr(self, y__.info["var_name"], y__)
                    
                    xy_names = [y__.info["var_name"], x__.info["var_name"]]

            # It's not a grid mapping, go for lons and lats
            except AttributeError:
                area = None
                if(chn.area in areas):
                    str_arc = str(areas.index(chn.area))
                    coordinates = ("lat"+str_arc + " " + "lon"+str_arc)
                else:
                    areas.append(chn.area)
                    str_arc = str(area_counter)
                    area_counter += 1
                    lons = InfoObject()
                    try:
                        lons.data = chn.area.lons[:]
                    except AttributeError:
                        pass

                    lons.info = {"var_name": "lon"+str_arc,
                                 "var_data": lons.data,
                                 "var_dim_names": ("y"+str_arc,
                                                   "x"+str_arc),
                                 "units": "degrees east",
                                 "long_name": "longitude coordinate",
                                 "standard_name": "longitude"}
                    if lons.data is not None:
                        setattr(self, lons.info["var_name"], lons)

                    lats = InfoObject()
                    try:
                        lats.data = chn.area.lats[:]
                    except AttributeError:
                        pass
                    
                    lats.info = {"var_name": "lat"+str_arc,
                                 "var_data": lats.data,
                                 "var_dim_names": ("y"+str_arc,
                                                   "x"+str_arc),
                                 "units": "degrees north",
                                 "long_name": "latitude coordinate",
                                 "standard_name": "latitude"}
                    if lats.data is not None:
                        setattr(self, lats.info["var_name"], lats)
                    
                    if lats.data is not None and lons.data is not None:
                        coordinates = (lats.info["var_name"]+" "+
                                       lons.info["var_name"])
                xy_names = ["y"+str_arc, "x"+str_arc]

            if (chn.area, chn.info['units']) in area_units:
                str_cnt = str(area_units.index((chn.area, chn.info['units'])))
                # area has been used before
                band = getattr(self, "band" + str_cnt)

                # data
                band.data = np.concatenate((band.data, data), axis=band_axis)
                band.info["var_data"] = band.data
                
                # bandname
                bandname = getattr(self, "bandname" + str_cnt)
                bandname.data = np.concatenate((bandname.data,
                                                np.array([chn.name])))
                bandname.info["var_data"] = bandname.data

                # offset
                off_attr = np.concatenate((off_attr,
                                           np.array([offset])))
                band.info["add_offset"] = off_attr

                # scale
                sca_attr = np.concatenate((sca_attr,
                                           np.array([scale])))
                band.info["scale_factor"] = sca_attr

                # wavelength bounds
                bwl = getattr(self, "wl_bnds" + str_cnt)
                bwl.data = np.vstack((bwl.data,
                                      np.array([chn.wavelength_range[0],
                                                chn.wavelength_range[2]])))
                bwl.info["var_data"] = bwl.data

                # nominal_wavelength
                nwl = getattr(self, "nominal_wavelength" + str_cnt)
                nwl.data = np.concatenate((nwl.data,
                                           np.array([chn.wavelength_range[1]])))
                nwl.info["var_data"] = nwl.data


            else:
                # first encounter of this area and unit
                str_cnt = str(counter)
                counter += 1
                area_units.append((chn.area, chn.info["units"]))
                
                # data

                band = InfoObject()
                band.data = data
                dim_names = xy_names
                dim_names.insert(band_axis, 'band'+str_cnt)
                band.info = {"var_name": "Image"+str_cnt,
                             "var_data": band.data,
                             'var_dim_names': dim_names,
                             "_FillValue": fill_value,
                             "long_name": "Band data",
                             "units": chn.info["units"],
                             "resolution": chn.resolution}


                # bandname
                
                bandname = InfoObject()
                bandname.data = np.array([chn.name], 'O')
                bandname.info = {"var_name": "band"+str_cnt,
                                 "var_data": bandname.data,
                                 "var_dim_names": ("band"+str_cnt,),
                                 "standard_name": "band_name"}
                setattr(self, "bandname" + str_cnt, bandname)
                
                # offset
                off_attr = np.array([offset])
                band.info["add_offset"] = off_attr

                # scale
                sca_attr = np.array([scale])
                band.info["scale_factor"] = sca_attr
                
                # wavelength bounds
                wlbnds = InfoObject()
                wlbnds.data = np.array([[chn.wavelength_range[0],
                                         chn.wavelength_range[2]]])
                wlbnds.info = {"var_name": "wl_bnds"+str_cnt,
                               "var_data": wlbnds.data,
                               "var_dim_names": ("band"+str_cnt, "nv")}
                setattr(self, wlbnds.info["var_name"], wlbnds)
                
                # nominal_wavelength
                nomwl = InfoObject()
                nomwl.data = np.array([chn.wavelength_range[1]])
                nomwl.info = {"var_name": "nominal_wavelength"+str_cnt,
                              "var_data": nomwl.data,
                              "var_dim_names": ("band"+str_cnt,),
                              "standard_name": "radiation_wavelength",
                              "units": "um",
                              "bounds": wlbnds.info["var_name"]}
                setattr(self, "nominal_wavelength" + str_cnt, nomwl)

                # grid mapping or lon lats
                if area is not None:
                    band.info["grid_mapping"] = area.info["var_name"]
                else:
                    band.info["coordinates"] = coordinates

                setattr(self, "band" + str_cnt, band)

        for i, area_unit in enumerate(area_units):
            # compute data reduction
            fill_value = np.iinfo(CF_DATA_TYPE).min
            band = getattr(self, "band" + str(i))
            # band.info["valid_range"] = np.array([valid_min, valid_max]),
            
def proj2cf(proj_dict):
    """Return the cf grid mapping from a proj dict.

    Description of the cf grid mapping:
    http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.4/ch05s06.html
    
    Table of the available grid mappings:
    http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.4/apf.html
    """

    cases = {"geos": geos2cf,
             "stere": stere2cf,
             "merc": merc2cf,
             "aea": aea2cf,
             "laea": laea2cf,
             "ob_tran": obtran2cf,}

    return cases[proj_dict["proj"]](proj_dict)

def geos2cf(proj_dict):
    """Return the cf grid mapping from a geos proj dict.
    """

    return {"grid_mapping_name": "geostationary",
            "latitude_of_projection_origin": 0.0,
            "longitude_of_projection_origin": eval(proj_dict["lon_0"]),
            "semi_major_axis": eval(proj_dict["a"]),
            "semi_minor_axis": eval(proj_dict["b"]),
            "perspective_point_height": eval(proj_dict["h"])
            }

def stere2cf(proj_dict):
    """Return the cf grid mapping from a stereographic proj dict.
    """

    return {"grid_mapping_name": "stereographic",
            "latitude_of_projection_origin": eval(proj_dict["lat_0"]),
            "longitude_of_projection_origin": eval(proj_dict["lon_0"]),
            "scale_factor_at_projection_origin": eval(
            proj_dict.get("x_0", "1.0")),
            "false_easting": eval(proj_dict.get("x_0", "0")),
            "false_northing" : eval(proj_dict.get("y_0", "0"))
            }

def merc2cf(proj_dict):
    """Return the cf grid mapping from a mercator proj dict.
    """

    raise NotImplementedError(
        "CF grid mapping from a PROJ.4 mercator projection is not implemented")

def aea2cf(proj_dict):
    """Return the cf grid mapping from a Albers Equal Area proj dict.
    """

    #standard_parallels = []
    #for item in ['lat_1', 'lat_2']:
    #    if item in proj_dict:
    #        standard_parallels.append(eval(proj_dict[item]))
    if 'lat_2' in proj_dict:
        standard_parallel = [eval(proj_dict['lat_1']),
                             eval(proj_dict['lat_2'])]
    else:
        standard_parallel = [eval(proj_dict['lat_1'])]
        
    lat_0 = 0.0
    if 'lat_0' in proj_dict:
        lat_0 = eval(proj_dict['lat_0'])

    x_0 = 0.0
    if 'x_0' in proj_dict:
        x_0 = eval(proj_dict['x_0'])

    y_0 = 0.0
    if 'y_0' in proj_dict:
        y_0 = eval(proj_dict['y_0'])
    
    retv = {"grid_mapping_name": "albers_conical_equal_area",
            "standard_parallel": standard_parallel,
            "latitude_of_projection_origin": lat_0,
            "longitude_of_central_meridian": eval(proj_dict["lon_0"]),
            "false_easting": x_0,
            "false_northing": y_0
            }

    retv = build_dict("albers_conical_equal_area",
                      proj_dict,
                      standard_parallel=["lat_1", "lat_2"],
                      latitude_of_projection_origin="lat_0",
                      longitude_of_central_meridian="lon_0",
                      false_easting="x_0",
                      false_northing="y_0")

    return retv

def laea2cf(proj_dict):
    """Return the cf grid mapping from a Lambert azimuthal equal-area proj dict.
    http://trac.osgeo.org/gdal/wiki/NetCDF_ProjectionTestingStatus
    """
    x_0 = eval(proj_dict.get('x_0', '0.0'))
    y_0 = eval(proj_dict.get('y_0', '0.0'))

    #print x_0, y_0

    retv = {"grid_mapping_name": "lambert_azimuthal_equal_area",
            "longitude_of_projection_origin": eval(proj_dict["lon_0"]),
            "latitude_of_projection_origin": eval(proj_dict["lat_0"]),
            "false_easting": x_0,
            "false_northing": y_0
            }

    retv = build_dict("lambert_azimuthal_equal_area",
                      proj_dict,
                      longitude_of_projection_origin="lon_0",
                      latitude_of_projection_origin="lat_0",
                      false_easting="x_0",
                      false_northing="y_0")

    return retv


def obtran2cf(proj_dict):
    """Return a grid mapping from a rotated pole grid (General Oblique
    Transformation projection) proj dict.
    
    Please be aware this is not yet supported by CF!
    """
    LOG.warning("The General Oblique Transformation " + 
                "projection is not CF compatible yet...")
    x_0 = eval(proj_dict.get('x_0', '0.0'))
    y_0 = eval(proj_dict.get('y_0', '0.0'))

    #print x_0, y_0

    retv = {"grid_mapping_name": "general_oblique_transformation",
            "longitude_of_projection_origin": eval(proj_dict["lon_0"]),
            "grid_north_pole_latitude": eval(proj_dict["o_lat_p"]),
            "grid_north_pole_longitude": eval(proj_dict["o_lon_p"]),
            "false_easting": x_0,
            "false_northing": y_0
            }

    retv = build_dict("general_oblique_transformation",
                      proj_dict,
                      longitude_of_projection_origin="lon_0",
                      grid_north_pole_latitude="o_lat_p",
                      grid_north_pole_longitude="o_lon_p",
                      false_easting="x_0",
                      false_northing="y_0")

    return retv



def build_dict(proj_name, proj_dict, **kwargs):
    new_dict = {}
    new_dict["grid_mapping_name"] = proj_name
    for key, val in kwargs.items():
        if isinstance(val, (list, tuple)):
            new_dict[key] = [eval(proj_dict[x]) for x in val if x in proj_dict]
        elif val in proj_dict:
            new_dict[key] = eval(proj_dict[val])
    # add a, b, rf and/or ellps
    if "a" in proj_dict:
        new_dict["semi_major_axis"] = eval(proj_dict["a"])
    if "b" in proj_dict:
        new_dict["semi_minor_axis"] = eval(proj_dict["b"])
    if "rf" in proj_dict:
        new_dict["inverse_flattening"] = eval(proj_dict["rf"])
    if "ellps" in proj_dict:
        new_dict["ellipsoid"] = proj_dict["ellps"]
            
    return new_dict

def aeqd2cf(proj_dict):
    return build_dict("azimuthal_equidistant",
                      proj_dict,
                      standard_parallel=["lat_1", "lat_2"],
                      latitude_of_projection_origin="lat_0",
                      longitude_of_central_meridian="lon_0",
                      false_easting="x_0",
                      false_northing="y_0")