1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2010, 2011, 2012.
# Author(s):
# Kristian Rune Larssen <krl@dmi.dk>
# Adam Dybbroe <adam.dybbroe@smhi.se>
# Martin Raspaud <martin.raspaud@smhi.se>
# Esben S. Nielsen <esn@dmi.dk>
# This file is part of mpop.
# mpop is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# mpop is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with
# mpop. If not, see <http://www.gnu.org/licenses/>.
"""mpop netcdf4 writer interface.
"""
__revision__ = 0.1
import numpy as np
from mpop.satout.cfscene import CFScene
def save(scene, filename, compression=True, dtype=np.int16, band_axis=2):
"""Saves the scene as a NetCDF4 file, with CF conventions.
*band_axis* gives the which axis to use for the band dimension. For
example, use band_axis=0 to get dimensions like (band, y, x).
"""
scene.add_to_history("Saved as netcdf4/cf by pytroll/mpop.")
return netcdf_cf_writer(filename, CFScene(scene, dtype, band_axis),
compression=compression)
class WriterDimensionError(Exception):
""" Basic writer exception """
pass
def attribute_dispenser( info ):
""" returns valid attribute key value pairs
(for cosmetic reasons, sorted is better than random)"""
for k, v in sorted(info.iteritems()):
if k.startswith('var_'):
continue
yield (k, v)
def variable_dispenser( root_object, object_list ):
""" Assembles a list of meta info objects """
# Handle members with info objects
for v in dir(root_object):
obj = getattr(root_object, v)
if callable(obj):
continue
# Try to find members with 'info' attribute defined
# if in list members search through list to find
# elements with the 'info' attribute defined
try:
# test for info attribute on list elements
for under_obj in obj:
try:
under_obj.info
variable_dispenser(under_obj, object_list)
except AttributeError:
pass
except TypeError:
try:
# test for info attribute scalar members
obj.info
variable_dispenser(obj, object_list)
except AttributeError:
pass
# Handle local info objects
try:
# handle output of member variables without info attribute
if 'var_children' in root_object.info:
object_list.extend(root_object.info['var_children'])
# handle object with info attribute
object_list.append(root_object.info)
except AttributeError:
pass
def find_tag(info_list , tag):
"""
Iterates through info objects to find specific tag.
Returns list of matching values.
"""
tag_data = []
for info in info_list:
try:
tag_data.append(info[tag])
except KeyError:
pass
return tag_data
def find_FillValue_tags(info_list ):
"""
Iterates through info objects to find _FillValue tags for var_names
"""
fill_value_dict={}
for info in info_list:
try:
fill_value_dict[info['var_name']] = info['_FillValue']
except KeyError:
pass
try:
fill_value_dict[info['var_name']] = None
except KeyError:
pass
return fill_value_dict
def find_info(info_list, tag):
"""
Iterates through info objects to find specific tag.
Return list of matching info objects.
"""
tag_info_objects = []
for info in info_list:
if tag in info:
tag_info_objects.append(info)
return tag_info_objects
def dtype(element):
"""
Return the dtype of an array or the type of the element.
"""
if hasattr(element, "dtype"):
return element.dtype
else:
return type(element)
def shape(element):
"""
Return the shape of an array or empty tuple if not an array.
"""
if hasattr(element, "shape"):
return element.shape
else:
return ()
def netcdf_cf_writer(filename, root_object, compression=True):
""" Write data to file to netcdf file. """
from netCDF4 import Dataset
rootgrp = Dataset(filename, 'w')
try:
info_list = []
variable_dispenser( root_object, info_list )
# find available dimensions
dim_names = find_tag( info_list , 'var_dim_names' )
# go through all cases of 'var_callback' and create objects which are
# linked to by the 'var_data' keyword. This ensures that data are only
# read in when needed.
cb_infos = find_info(info_list, 'var_callback')
for info in cb_infos:
# execute the callback functors
info['var_data'] = info['var_callback']()
var_data = find_tag(info_list , 'var_data')
# create dimensions in NetCDF file, dimension lengths are based on
# array sizes
used_dim_names = {}
for names, values in zip(dim_names, [ shape(v) for v in var_data ] ):
# case of a scalar
if len(names) == 0:
continue
for dim_name, dim_size in zip(names, values):
# ensure unique dimension names
if dim_name in used_dim_names:
if dim_size != used_dim_names[dim_name]:
raise WriterDimensionError("Dimension name "
+ dim_name +
" already in use")
else:
continue
rootgrp.createDimension(dim_name, dim_size)
used_dim_names[dim_name] = dim_size
# create variables
var_names = find_tag(info_list , 'var_name')
nc_vars = []
fill_value_dict=find_FillValue_tags(info_list)
for name, vtype, dim_name in zip(var_names,
[dtype(vt) for vt in var_data ],
dim_names ):
# in the case of arrays containing strings:
if str(vtype) == "object":
vtype = str
nc_vars.append(rootgrp.createVariable(
name, vtype, dim_name,
zlib=compression,
fill_value=fill_value_dict[name]))
# insert attributes, search through info objects and create global
# attributes and attributes for each variable.
for info in info_list:
if 'var_name' in info:
# handle variable attributes
nc_var = rootgrp.variables[info['var_name']]
nc_var.set_auto_maskandscale(False)
for j, k in attribute_dispenser(info):
if j not in ["_FillValue"]:
setattr( nc_var, j, k)
else:
# handle global attributes
for j, k in attribute_dispenser(info):
setattr( rootgrp, j, k)
# insert data
for name, vname, vdata in zip(var_names, nc_vars, var_data):
vname[:] = vdata
finally:
rootgrp.close()
if __name__ == '__main__':
from mpop.satellites.meteosat09 import Meteosat09SeviriScene
import datetime
TIME = datetime.datetime(2009, 10, 8, 14, 30)
GLOB = Meteosat09SeviriScene(area_id="EuropeCanary", time_slot=TIME)
GLOB.load([0.6, 10.8])
save(GLOB, 'tester.nc')
|