1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2011.
# Author(s):
# Martin Raspaud <martin.raspaud@smhi.se>
# This file is part of mpop.
# mpop is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# mpop is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with
# mpop. If not, see <http://www.gnu.org/licenses/>.
"""Module to compute satellite positions from TLE.
"""
import datetime
import sys
import urllib2
import numpy as np
CK2 = 5.413080e-4
CK4 = 0.62098875e-6
E6A = 1.0e-6
QOMS2T = 1.88027916e-9
S = 1.01222928
XJ3 = -0.253881e-5
XKE = 0.743669161e-1
XKMPER = 6378.137
XMNPDA = 1440.0
AE = 1.0
# earth flattening
F = 1/298.257223563
if sys.version_info < (2, 5):
import time
def strptime(string, fmt=None):
"""This function is available in the datetime module only
from Python >= 2.5.
"""
return datetime.datetime(*time.strptime(string, fmt)[:6])
else:
strptime = datetime.datetime.strptime
class Tle(object):
"""The TLE object holds information and methods for orbit position
estimation.
"""
def __init__(self, tle=None, satellite=None):
self.tle = tle
if satellite:
tles_dict = {}
import glob
filelist = glob.glob("/data/24/saf/polar_in/tle2/tle-*.txt")
if len(filelist) > 0:
filelist.sort()
tlef = open(filelist[-1])
tles = [item.strip() for item in tlef]
tlef.close()
for i in xrange(0, len(tles) - 2, 3):
tles_dict[tles[i]] = tles[i+1]+"\n"+tles[i+2]
else:
for fname in ["resource.txt", "weather.txt"]:
url = "http://celestrak.com/NORAD/elements/" + fname
tles = urllib2.urlopen(url).readlines()
tles = [item.strip() for item in tles]
for i in xrange(0, len(tles) - 2, 3):
tles_dict[tles[i]] = tles[i+1]+"\n"+tles[i+2]
self._read_tle(tles_dict[satellite.upper()])
self._preprocess()
def _read_tle(self, lines):
"""Read the raw tle.
"""
def _read_tle_decimal(rep):
"""Read tle decimal point numbers.
"""
num = int(rep[:-2]) * 1.0e-5
exp = int(rep[-2:])
return num * 10 ** exp
tlist = lines.split()
self.tle = {}
self.tle["satnumber"] = tlist[1][:5]
self.tle["classification"] = tlist[1][5:]
self.tle["id_launch_year"] = tlist[2][:2]
self.tle["id_launch_number"] = tlist[2][2:5]
self.tle["id_launch_piece"] = tlist[2][5:]
self.tle["epoch_year"] = int(tlist[3][:2])
self.tle["epoch_day"] = float(tlist[3][2:])
self.tle["epoch"] = (strptime(tlist[3][:2], "%y") +
datetime.timedelta(days=float(tlist[3][2:]) - 1))
self.tle["mean_motion_derivative"] = float(tlist[4])
self.tle["mean_motion_sec_derivative"] = _read_tle_decimal(tlist[5])
self.tle["bstar"] = _read_tle_decimal(tlist[6])
self.tle["ephemeris_type"] = int(tlist[7])
self.tle["element_number"] = int(tlist[8][:-1])
self.tle["inclination"] = float(tlist[11])
self.tle["right_ascension"] = float(tlist[12])
self.tle["excentricity"] = int(tlist[13]) * 10 ** -7
self.tle["arg_perigee"] = float(tlist[14])
self.tle["mean_anomaly"] = float(tlist[15])
self.tle["mean_motion"] = float(tlist[16][:11])
self.tle["orbit"] = int(tlist[16][11:-1])
def _preprocess(self):
"""Derivate some values from raw tle.
"""
self.tle["inclination"] = np.deg2rad(self.tle["inclination"])
self.tle["right_ascension"] = np.deg2rad(self.tle["right_ascension"])
self.tle["arg_perigee"] = np.deg2rad(self.tle["arg_perigee"])
self.tle["mean_anomaly"] = np.deg2rad(self.tle["mean_anomaly"])
self.tle["mean_motion"] *= (np.pi * 2 / XMNPDA)
self.tle["mean_motion_derivative"] *= np.pi * 2 / XMNPDA ** 2
self.tle["mean_motion_sec_derivative"] *= np.pi * 2 / XMNPDA ** 3
self.tle["bstar"] *= AE
n_0 = self.tle["mean_motion"]
k_e = XKE
k_2 = CK2
i_0 = self.tle["inclination"]
e_0 = self.tle["excentricity"]
a_1 = (k_e / n_0) ** (2.0/3)
delta_1 = ((3/2.0) * (k_2 / a_1**2) * ((3 * np.cos(i_0)**2 - 1) /
(1 - e_0**2)**(2.0/3)))
a_0 = a_1 * (1 - delta_1/3 - delta_1**2 - (134.0/81) * delta_1**3)
delta_0 = ((3/2.0) * (k_2 / a_0**2) * ((3 * np.cos(i_0)**2 - 1) /
(1 - e_0**2)**(2.0/3)))
# original mean motion
n_0pp = n_0 / (1 + delta_0)
self.tle["original_mean_motion"] = n_0pp
# semi major axis
a_0pp = a_0 / (1 - delta_0)
self.tle["semi_major_axis"] = a_0pp
self.tle["period"] = np.pi * 2 / n_0pp
self.tle["perigee"] = (a_0pp * (1 - e_0) / AE - AE) * XKMPER
now = self.tle["epoch"]
self.tle["right_ascension_lon"] = (self.tle["right_ascension"]
- gmst(now))
if self.tle["right_ascension_lon"] > np.pi:
self.tle["right_ascension_lon"] -= 2 * np.pi
# pylint: disable-msg=C0103
def get_position(self, current_time):
"""Get cartesian position and velocity.
"""
# for near earth orbits, period must be < 255 minutes
perigee = self.tle["perigee"]
a_0pp = self.tle["semi_major_axis"]
e_0 = self.tle["excentricity"]
i_0 = self.tle["inclination"]
n_0pp = self.tle["original_mean_motion"]
k_2 = CK2
k_4 = CK4
k_e = XKE
bstar = self.tle["bstar"]
w_0 = self.tle["arg_perigee"]
M_0 = self.tle["mean_anomaly"]
W_0 = self.tle["right_ascension"]
t_0 = self.tle["epoch"]
A30 = -XJ3 * AE**3
if perigee < 98:
s = 20/XKMPER + AE
qoms2t = (QOMS2T ** 0.25 + S - s) ** 4
elif perigee < 156:
s = a_0pp * (1 - e_0) - S + AE
qoms2t = (QOMS2T ** 0.25 + S - s) ** 4
else:
qoms2t = QOMS2T
s = S
theta = np.cos(i_0)
xi = 1 / (a_0pp - s)
beta_0 = np.sqrt(1 - e_0 ** 2)
eta = a_0pp * e_0 * xi
C_2 = (qoms2t * xi**4 * n_0pp * (1 - eta**2)**(-3.5) *
(a_0pp * (1 + 1.5 * eta**2 + 4 * e_0 * eta + e_0 * eta**3) +
1.5 * (k_2 * xi) / (1 - eta**2) * (-0.5 + 1.5 * theta**2)*
(8 + 24 * eta**2 + 3 * eta**4)))
C_1 = bstar * C_2
C_3 = (qoms2t * xi ** 5 * A30 * n_0pp * AE * np.sin(i_0) / (k_2 * e_0))
coef = 2 * qoms2t * xi**4 * a_0pp * beta_0**2*(1-eta**2)**(-7/2.0)
C_4 = (coef * n_0pp *
((2 * eta * (1 + e_0 * eta) + e_0/2.0 + (eta**3)/2.0) -
2 * k_2 * xi / (a_0pp * (1 - eta**2)) *
(3*(1-3*theta**2) *
(1 + (3*eta**2)/2.0 - 2*e_0*eta - e_0*eta**3/2.0) +
3/4.0*(1-theta**2)*
(2*eta**2 - e_0*eta - e_0*eta**3)*np.cos(2*w_0))))
C_5 = coef * (1 + 11/4.0 * eta * (eta + e_0) + e_0 * eta**3)
D_2 = 4 * a_0pp * xi * C_1**2
D_3 = 4/3.0 * a_0pp * xi**2 * (17*a_0pp + s) * C_1**3
D_4 = 2/3.0 * a_0pp * xi**3 * (221*a_0pp + 31*s) * C_1**4
# Secular effects of atmospheric drag and gravitation
dt = _days(current_time - t_0) * XMNPDA
M_df = (M_0 + (1 +
3*k_2*(-1 + 3*theta**2)/(2*a_0pp**2 * beta_0**3) +
3*k_2**2*(13 - 78*theta**2 + 137*theta**4)/
(16*a_0pp**4*beta_0**7))*
n_0pp*dt)
w_df = (w_0 + (-3*k_2*(1 - 5*theta**2)/(2*a_0pp**2*beta_0**4) +
3 * k_2**2 * (7 - 114*theta**2 + 395*theta**4)/
(16*a_0pp*beta_0**8) +
5*k_4*(3-36*theta**2+49*theta**4)/
(4*a_0pp**4*beta_0**8))*
n_0pp*dt)
W_df = (W_0 + (-3*k_2*theta/(a_0pp**2*beta_0**4) +
3*k_2**2*(4*theta- 19*theta**3)/(2*a_0pp**4*beta_0**8) +
5*k_4*theta*(3-7*theta**2)/(2*a_0pp**4*beta_0**8))*
n_0pp*dt)
deltaw = bstar * C_3 * np.cos(w_0)*dt
deltaM = (-2/3.0 * qoms2t * bstar * xi**4 * AE / (e_0*eta) *
((1 + eta * np.cos(M_df))**3 - (1 + eta * np.cos(M_0))**3))
M_p = M_df + deltaw + deltaM
w = w_df - deltaw - deltaM
W = (W_df - 21/2.0 * (n_0pp * k_2 * theta)/(a_0pp**2 * beta_0**2) *
C_1 * dt**2)
e = (e_0 -
bstar * C_4 * dt -
bstar * C_5 * (np.sin(M_p) - np.sin(M_0)))
a = a_0pp * (1 - C_1 * dt - D_2 * dt**2 - D_3 * dt**3 - D_4 * dt**4)**2
L = M_p + w + W + n_0pp * (3/2.0 * C_1 * dt**2 +
(D_2 + 2 * C_1 ** 2) * dt**3 +
1/4.0 *
(3*D_3 + 12*C_1*D_2 + 10*C_1**3)*dt**4 +
1.0/5 * (3*D_4 + 12*C_1*D_3 + 6*D_2**2 +
30*C_1**2*D_2 + 15*C_1**4)*dt**5)
beta = np.sqrt(1 - e**2)
n = k_e / (a ** (3/2.0))
# Long-period periodic terms
a_xN = e * np.cos(w)
a_yNL = A30 * np.sin(i_0) / (4.0 * k_2 * a * beta**2)
L_L = a_yNL/2 * a_xN * ((3 + 5 * theta) / (1 + theta))
L_T = L + L_L
a_yN = e * np.sin(w) + a_yNL
U = (L_T - W) % (np.pi * 2)
Epw = U
for i in range(10):
DeltaEpw = ((U - a_yN * np.cos(Epw) + a_xN * np.sin(Epw) - Epw) /
(-a_yN * np.sin(Epw) - a_xN * np.cos(Epw) + 1))
Epw = Epw + DeltaEpw
if DeltaEpw < 10e-12:
break
# preliminary quantities for short-period periodics
ecosE = a_xN * np.cos(Epw) + a_yN * np.sin(Epw)
esinE = a_xN * np.sin(Epw) - a_yN * np.cos(Epw)
e_L = (a_xN**2 + a_yN**2)**(0.5)
p_L = a * (1 - e_L**2)
r = a * (1 - ecosE)
rdot = k_e * np.sqrt(a)/r * esinE
rfdot = k_e * np.sqrt(p_L) / r
cosu = a / r * (np.cos(Epw) - a_xN +
(a_yN * (esinE) / (1 + np.sqrt(1 - e_L**2))))
sinu = a / r * (np.sin(Epw) - a_yN +
(a_xN * (esinE) / (1 + np.sqrt(1 - e_L**2))))
u = np.arctan2(sinu, cosu)
cos2u = np.cos(2*u)
sin2u = np.sin(2*u)
Deltar = k_2/(2*p_L) * (1 - theta**2) * cos2u
Deltau = -k_2/(4*p_L**2) * (7*theta**2 - 1) * sin2u
DeltaW = 3*k_2 * theta / (2 * p_L**2) * sin2u
Deltai = 3*k_2 * theta / (2 * p_L**2) * cos2u * np.sin(i_0)
Deltardot = - k_2 * n / p_L * (1 - theta**2) * sin2u
Deltarfdot = k_2 * n / p_L * ((1 - theta**2) * cos2u -
3/2.0 * (1 - 3*theta**2))
# osculating quantities
r_k = r * (1 - 3/2.0 * k_2 * np.sqrt(1 - e_L**2)/p_L**2 *
(3 * theta**2 - 1)) + Deltar
u_k = u + Deltau
W_k = W + DeltaW
i_k = i_0 + Deltai
rdot_k = rdot + Deltardot
rfdot_k = rfdot + Deltarfdot
M_x = -np.sin(W_k) * np.cos(i_k)
M_y = np.cos(W_k) * np.cos(i_k)
M_z = np.sin(i_k)
N_x = np.cos(W_k)
N_y = np.sin(W_k)
N_z = 0
U_x = M_x * np.sin(u_k) + N_x * np.cos(u_k)
U_y = M_y * np.sin(u_k) + N_y * np.cos(u_k)
U_z = M_z * np.sin(u_k) + N_z * np.cos(u_k)
V_x = M_x * np.cos(u_k) - N_x * np.sin(u_k)
V_y = M_y * np.cos(u_k) - N_y * np.sin(u_k)
V_z = M_z * np.cos(u_k) - N_z * np.sin(u_k)
r_x = r_k * U_x
r_y = r_k * U_y
r_z = r_k * U_z
rdot_x = rdot_k * U_x + rfdot_k * V_x
rdot_y = rdot_k * U_y + rfdot_k * V_y
rdot_z = rdot_k * U_z + rfdot_k * V_z
return r_x, r_y, r_z, rdot_x, rdot_y, rdot_z
def get_latlonalt(self, current_time):
"""Get lon lat and altitude for current time
"""
pos_x, pos_y, pos_z, vel_x, vel_y, vel_z = \
self.get_position(current_time)
del vel_x, vel_y, vel_z
lon = ((np.arctan2(pos_y * XKMPER, pos_x * XKMPER) - gmst(current_time))
% (2 * np.pi))
if lon > np.pi:
lon -= np.pi * 2
if lon <= -np.pi:
lon += np.pi * 2
r = np.sqrt(pos_x ** 2 + pos_y ** 2)
lat = np.arctan2(pos_z, r)
e2 = F * (2 - F)
while True:
lat2 = lat
c = 1/(np.sqrt(1 - e2 * (np.sin(lat2) ** 2)))
lat = np.arctan2(pos_z + c * e2 *np.sin(lat2), r)
if abs(lat - lat2) < 1e-10:
break
alt = r / np.cos(lat)- c
alt *= XKMPER
return lat, lon, alt
# pylint: enable-msg=C0103
def _jdays(current_time):
"""Get the julian day of *current_time*.
"""
d_t = current_time - datetime.datetime(2000, 1, 1, 12, 0)
return _days(d_t)
def _days(d_t):
"""Get the days (floating point) from *d_t*.
"""
return (d_t.days +
(d_t.seconds +
d_t.microseconds / (1000000.0)) / (24 * 3600.0))
def gmst(current_time):
"""Greenwich mean sidereal current_time, in radians.
http://celestrak.com/columns/v02n02/
"""
now = current_time
#now = datetime.datetime(1995, 10, 1, 9, 0)
now0 = datetime.datetime(now.year, now.month, now.day)
epoch = datetime.datetime(2000, 1, 1, 12, 0)
du2 = _days(now - epoch)
d_u = _days(now0 - epoch)
dus = (du2 - d_u) * 86400
t_u = d_u / 36525.0
theta_g_0 = (24110.54841 + t_u * (8640184.812866 +
t_u * (0.093104 - t_u * 6.2 * 10e-6)))
theta_g = (theta_g_0 + dus * 1.00273790934) % 86400
return (theta_g / 86400.0) * 2 * np.pi
if __name__ == "__main__":
pass
|