File: two_line_elements.py

package info (click to toggle)
python-mpop 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,516 kB
  • ctags: 1,877
  • sloc: python: 15,374; xml: 820; makefile: 90; sh: 8
file content (422 lines) | stat: -rw-r--r-- 14,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2011.

# Author(s):
 
#   Martin Raspaud <martin.raspaud@smhi.se>

# This file is part of mpop.

# mpop is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.

# mpop is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.

# You should have received a copy of the GNU General Public License along with
# mpop.  If not, see <http://www.gnu.org/licenses/>.

"""Module to compute satellite positions from TLE.
"""
import datetime
import sys
import urllib2

import numpy as np


CK2 = 5.413080e-4
CK4 = 0.62098875e-6
E6A = 1.0e-6
QOMS2T = 1.88027916e-9
S = 1.01222928
XJ3 = -0.253881e-5
XKE = 0.743669161e-1
XKMPER = 6378.137
XMNPDA = 1440.0
AE = 1.0
# earth flattening
F = 1/298.257223563


if sys.version_info < (2, 5):
    import time
    def strptime(string, fmt=None):
        """This function is available in the datetime module only
        from Python >= 2.5.
        """
        
        return datetime.datetime(*time.strptime(string, fmt)[:6])
else:
    strptime = datetime.datetime.strptime
class Tle(object):
    """The TLE object holds information and methods for orbit position
    estimation.
    """


    def __init__(self, tle=None, satellite=None):
        self.tle = tle
        if satellite:
            tles_dict = {}

            import glob
            filelist = glob.glob("/data/24/saf/polar_in/tle2/tle-*.txt")
            if len(filelist) > 0:
                filelist.sort()
                tlef = open(filelist[-1])
                tles = [item.strip() for item in tlef]
                tlef.close()
                for i in xrange(0, len(tles) - 2, 3):
                    tles_dict[tles[i]] = tles[i+1]+"\n"+tles[i+2]
            else:
                for fname in ["resource.txt", "weather.txt"]:
                    url = "http://celestrak.com/NORAD/elements/" + fname
                    tles = urllib2.urlopen(url).readlines()
                    tles = [item.strip() for item in tles]

                    for i in xrange(0, len(tles) - 2, 3):
                        tles_dict[tles[i]] = tles[i+1]+"\n"+tles[i+2]

            self._read_tle(tles_dict[satellite.upper()])
            self._preprocess()


    def _read_tle(self, lines):
        """Read the raw tle.
        """

        def _read_tle_decimal(rep):
            """Read tle decimal point numbers.
            """
            num = int(rep[:-2]) * 1.0e-5
            exp = int(rep[-2:])
            return num * 10 ** exp

        tlist = lines.split()
        self.tle = {}
        self.tle["satnumber"] = tlist[1][:5]
        self.tle["classification"] = tlist[1][5:]
        self.tle["id_launch_year"] = tlist[2][:2]
        self.tle["id_launch_number"] = tlist[2][2:5]
        self.tle["id_launch_piece"] = tlist[2][5:]
        self.tle["epoch_year"] = int(tlist[3][:2])
        self.tle["epoch_day"] = float(tlist[3][2:])
        self.tle["epoch"] = (strptime(tlist[3][:2], "%y") +
                        datetime.timedelta(days=float(tlist[3][2:]) - 1))
        self.tle["mean_motion_derivative"] = float(tlist[4])
        self.tle["mean_motion_sec_derivative"] = _read_tle_decimal(tlist[5])
        self.tle["bstar"] = _read_tle_decimal(tlist[6])
        self.tle["ephemeris_type"] = int(tlist[7])
        self.tle["element_number"] = int(tlist[8][:-1])

        self.tle["inclination"] = float(tlist[11])
        self.tle["right_ascension"] = float(tlist[12])
        self.tle["excentricity"] = int(tlist[13]) * 10 ** -7
        self.tle["arg_perigee"] = float(tlist[14])
        self.tle["mean_anomaly"] = float(tlist[15])
        self.tle["mean_motion"] = float(tlist[16][:11])
        self.tle["orbit"] = int(tlist[16][11:-1])


    def _preprocess(self):
        """Derivate some values from raw tle.
        """
        self.tle["inclination"] = np.deg2rad(self.tle["inclination"])
        self.tle["right_ascension"] = np.deg2rad(self.tle["right_ascension"])
        self.tle["arg_perigee"] = np.deg2rad(self.tle["arg_perigee"])
        self.tle["mean_anomaly"] = np.deg2rad(self.tle["mean_anomaly"])

        self.tle["mean_motion"] *= (np.pi * 2 / XMNPDA)
        self.tle["mean_motion_derivative"] *= np.pi * 2 / XMNPDA ** 2
        self.tle["mean_motion_sec_derivative"] *= np.pi * 2 / XMNPDA ** 3
        self.tle["bstar"] *= AE

        n_0 = self.tle["mean_motion"]
        k_e = XKE
        k_2 = CK2
        i_0 = self.tle["inclination"]
        e_0 = self.tle["excentricity"]

        a_1 = (k_e / n_0) ** (2.0/3)
        delta_1 = ((3/2.0) * (k_2 / a_1**2) * ((3 * np.cos(i_0)**2 - 1) /
                                              (1 - e_0**2)**(2.0/3)))

        a_0 = a_1 * (1 - delta_1/3 - delta_1**2 - (134.0/81) * delta_1**3)

        delta_0 = ((3/2.0) * (k_2 / a_0**2) * ((3 * np.cos(i_0)**2 - 1) /
                                              (1 - e_0**2)**(2.0/3)))

        # original mean motion
        n_0pp = n_0 / (1 + delta_0)
        self.tle["original_mean_motion"] = n_0pp

        # semi major axis
        a_0pp = a_0 / (1 - delta_0)
        self.tle["semi_major_axis"] = a_0pp

        self.tle["period"] = np.pi * 2 / n_0pp

        self.tle["perigee"] = (a_0pp * (1 - e_0) / AE - AE) * XKMPER

        now = self.tle["epoch"]

        self.tle["right_ascension_lon"] = (self.tle["right_ascension"]
                                           - gmst(now))

        if self.tle["right_ascension_lon"] > np.pi:
            self.tle["right_ascension_lon"] -= 2 * np.pi

# pylint: disable-msg=C0103

    def get_position(self, current_time):
        """Get cartesian position and velocity.
        """
        # for near earth orbits, period must be < 255 minutes

        perigee = self.tle["perigee"]
        a_0pp = self.tle["semi_major_axis"]
        e_0 = self.tle["excentricity"]
        i_0 = self.tle["inclination"]
        n_0pp = self.tle["original_mean_motion"]
        k_2 = CK2
        k_4 = CK4
        k_e = XKE
        bstar = self.tle["bstar"]
        w_0 = self.tle["arg_perigee"]
        M_0 = self.tle["mean_anomaly"]
        W_0 = self.tle["right_ascension"]
        t_0 = self.tle["epoch"]
        A30 = -XJ3 * AE**3

        if perigee < 98:
            s = 20/XKMPER + AE
            qoms2t = (QOMS2T ** 0.25 + S - s) ** 4
        elif perigee < 156:
            s = a_0pp * (1 - e_0) - S + AE 
            qoms2t = (QOMS2T ** 0.25 + S - s) ** 4
        else:
            qoms2t = QOMS2T
            s = S

        theta = np.cos(i_0)
        xi = 1 / (a_0pp - s)
        beta_0 = np.sqrt(1 - e_0 ** 2)
        eta = a_0pp * e_0 * xi

        C_2 = (qoms2t * xi**4 * n_0pp * (1 - eta**2)**(-3.5) *
               (a_0pp * (1 + 1.5 * eta**2 + 4 * e_0 * eta + e_0 * eta**3) +
                1.5 * (k_2 * xi) / (1 - eta**2) * (-0.5 + 1.5 * theta**2)*
                (8 + 24 * eta**2 + 3 * eta**4)))

        C_1 = bstar * C_2

        C_3 = (qoms2t * xi ** 5 * A30 * n_0pp * AE * np.sin(i_0) / (k_2 * e_0))

        coef = 2 * qoms2t * xi**4 * a_0pp * beta_0**2*(1-eta**2)**(-7/2.0)

        C_4 = (coef * n_0pp *
               ((2 * eta * (1 + e_0 * eta) + e_0/2.0 + (eta**3)/2.0) -
                2 * k_2 * xi / (a_0pp * (1 - eta**2)) *
                (3*(1-3*theta**2) *
                 (1 + (3*eta**2)/2.0 - 2*e_0*eta - e_0*eta**3/2.0) +
                 3/4.0*(1-theta**2)*
                 (2*eta**2 - e_0*eta - e_0*eta**3)*np.cos(2*w_0))))

        C_5 = coef * (1 + 11/4.0 * eta * (eta + e_0) + e_0 * eta**3)
        D_2 = 4 * a_0pp * xi * C_1**2
        D_3 = 4/3.0 * a_0pp * xi**2 * (17*a_0pp + s) * C_1**3
        D_4 = 2/3.0 * a_0pp * xi**3 * (221*a_0pp + 31*s) * C_1**4

        # Secular effects of atmospheric drag and gravitation
        dt = _days(current_time - t_0) * XMNPDA

        M_df = (M_0 + (1 +
                       3*k_2*(-1 + 3*theta**2)/(2*a_0pp**2 * beta_0**3) +
                       3*k_2**2*(13 - 78*theta**2 + 137*theta**4)/
                       (16*a_0pp**4*beta_0**7))*
                n_0pp*dt)
        w_df = (w_0 + (-3*k_2*(1 - 5*theta**2)/(2*a_0pp**2*beta_0**4) +
                       3 * k_2**2 * (7 - 114*theta**2 + 395*theta**4)/
                       (16*a_0pp*beta_0**8) +
                       5*k_4*(3-36*theta**2+49*theta**4)/
                       (4*a_0pp**4*beta_0**8))*
                n_0pp*dt)
        W_df = (W_0 + (-3*k_2*theta/(a_0pp**2*beta_0**4) +
                       3*k_2**2*(4*theta- 19*theta**3)/(2*a_0pp**4*beta_0**8) +
                       5*k_4*theta*(3-7*theta**2)/(2*a_0pp**4*beta_0**8))*
                n_0pp*dt)
        deltaw = bstar * C_3 * np.cos(w_0)*dt
        deltaM = (-2/3.0 * qoms2t * bstar * xi**4 * AE / (e_0*eta) *
                  ((1 + eta * np.cos(M_df))**3 - (1 + eta * np.cos(M_0))**3))
        M_p = M_df + deltaw + deltaM
        w = w_df - deltaw - deltaM
        W = (W_df - 21/2.0 * (n_0pp * k_2 * theta)/(a_0pp**2 * beta_0**2) *
             C_1 * dt**2)

        e = (e_0 -
             bstar * C_4 * dt -
             bstar * C_5 * (np.sin(M_p) - np.sin(M_0)))

        a = a_0pp * (1 - C_1 * dt - D_2 * dt**2 - D_3 * dt**3 - D_4 * dt**4)**2
        L = M_p + w + W + n_0pp * (3/2.0 * C_1 * dt**2 +
                                   (D_2 + 2 * C_1 ** 2) * dt**3 +
                                   1/4.0 *
                                   (3*D_3 + 12*C_1*D_2 + 10*C_1**3)*dt**4 +
                                   1.0/5 * (3*D_4 + 12*C_1*D_3 + 6*D_2**2 +
                                            30*C_1**2*D_2 + 15*C_1**4)*dt**5)
        beta = np.sqrt(1 - e**2)
        n = k_e / (a ** (3/2.0))

        # Long-period periodic terms
        a_xN = e * np.cos(w)
        a_yNL = A30 * np.sin(i_0) / (4.0 * k_2 * a * beta**2)
        L_L = a_yNL/2 * a_xN * ((3 + 5 * theta) / (1 + theta))
        L_T = L + L_L
        a_yN = e * np.sin(w) + a_yNL

        U = (L_T - W) % (np.pi * 2)

        Epw = U
        for i in range(10):
            DeltaEpw = ((U - a_yN * np.cos(Epw) + a_xN  * np.sin(Epw) - Epw) /
                        (-a_yN * np.sin(Epw) - a_xN * np.cos(Epw) + 1))
            Epw = Epw + DeltaEpw
            if DeltaEpw < 10e-12:
                break

        # preliminary quantities for short-period periodics

        ecosE = a_xN * np.cos(Epw) + a_yN * np.sin(Epw)
        esinE = a_xN * np.sin(Epw) - a_yN * np.cos(Epw)

        e_L = (a_xN**2 + a_yN**2)**(0.5)
        p_L = a * (1 - e_L**2)
        r = a * (1 - ecosE)
        rdot = k_e * np.sqrt(a)/r * esinE
        rfdot = k_e * np.sqrt(p_L) / r
        cosu = a / r * (np.cos(Epw) - a_xN +
                        (a_yN * (esinE) / (1 + np.sqrt(1 - e_L**2))))
        sinu = a / r * (np.sin(Epw) - a_yN +
                        (a_xN * (esinE) / (1 + np.sqrt(1 - e_L**2))))
        u = np.arctan2(sinu, cosu)


        cos2u = np.cos(2*u)
        sin2u = np.sin(2*u)

        Deltar = k_2/(2*p_L) * (1 - theta**2) * cos2u
        Deltau = -k_2/(4*p_L**2) * (7*theta**2 - 1) * sin2u
        DeltaW = 3*k_2 * theta / (2 * p_L**2) * sin2u
        Deltai = 3*k_2 * theta / (2 * p_L**2) * cos2u * np.sin(i_0)
        Deltardot = - k_2 * n / p_L * (1 - theta**2) * sin2u
        Deltarfdot = k_2 * n / p_L * ((1 - theta**2) * cos2u -
                                      3/2.0 * (1 - 3*theta**2))

        # osculating quantities

        r_k = r * (1 - 3/2.0 * k_2 * np.sqrt(1 - e_L**2)/p_L**2 *
                   (3 * theta**2 - 1)) + Deltar
        u_k = u + Deltau
        W_k = W + DeltaW
        i_k = i_0 + Deltai
        rdot_k = rdot + Deltardot
        rfdot_k = rfdot + Deltarfdot

        M_x = -np.sin(W_k) * np.cos(i_k)
        M_y = np.cos(W_k) * np.cos(i_k)
        M_z = np.sin(i_k)

        N_x = np.cos(W_k)
        N_y = np.sin(W_k)
        N_z = 0

        U_x = M_x * np.sin(u_k) + N_x * np.cos(u_k)
        U_y = M_y * np.sin(u_k) + N_y * np.cos(u_k)
        U_z = M_z * np.sin(u_k) + N_z * np.cos(u_k)

        V_x = M_x * np.cos(u_k) - N_x * np.sin(u_k)
        V_y = M_y * np.cos(u_k) - N_y * np.sin(u_k)
        V_z = M_z * np.cos(u_k) - N_z * np.sin(u_k)


        r_x = r_k * U_x
        r_y = r_k * U_y
        r_z = r_k * U_z

        rdot_x = rdot_k * U_x + rfdot_k * V_x
        rdot_y = rdot_k * U_y + rfdot_k * V_y
        rdot_z = rdot_k * U_z + rfdot_k * V_z

        return r_x, r_y, r_z, rdot_x, rdot_y, rdot_z

    def get_latlonalt(self, current_time):
        """Get lon lat and altitude for current time
        """
        pos_x, pos_y, pos_z, vel_x, vel_y, vel_z = \
               self.get_position(current_time)
        del vel_x, vel_y, vel_z
        lon = ((np.arctan2(pos_y * XKMPER, pos_x * XKMPER) - gmst(current_time))
               % (2 * np.pi))

        if lon > np.pi:
            lon -= np.pi * 2
        if lon <= -np.pi:
            lon += np.pi * 2

        r = np.sqrt(pos_x ** 2 + pos_y ** 2)
        lat = np.arctan2(pos_z, r)
        e2 = F * (2 - F)
        while True:
            lat2 = lat
            c = 1/(np.sqrt(1 - e2 * (np.sin(lat2) ** 2)))
            lat = np.arctan2(pos_z + c * e2 *np.sin(lat2), r)
            if abs(lat - lat2) < 1e-10:
                break
        alt = r / np.cos(lat)- c
        alt *= XKMPER
        return lat, lon, alt
# pylint: enable-msg=C0103



def _jdays(current_time):
    """Get the julian day of *current_time*.
    """
    d_t = current_time - datetime.datetime(2000, 1, 1, 12, 0)
    return _days(d_t)

def _days(d_t):
    """Get the days (floating point) from *d_t*.
    """
    return (d_t.days +
            (d_t.seconds +
             d_t.microseconds / (1000000.0)) / (24 * 3600.0))

def gmst(current_time):
    """Greenwich mean sidereal current_time, in radians.
    http://celestrak.com/columns/v02n02/
    """
    now = current_time
    #now = datetime.datetime(1995, 10, 1, 9, 0)
    now0 = datetime.datetime(now.year, now.month, now.day)
    epoch = datetime.datetime(2000, 1, 1, 12, 0)
    du2 = _days(now - epoch)
    d_u = _days(now0 - epoch)

    dus = (du2 - d_u) * 86400
    t_u = d_u / 36525.0
    theta_g_0 = (24110.54841 + t_u * (8640184.812866 +
                                      t_u * (0.093104 - t_u * 6.2 * 10e-6)))
    theta_g = (theta_g_0 + dus * 1.00273790934) % 86400
    return (theta_g / 86400.0) * 2 * np.pi


    
if __name__ == "__main__":
    
    pass