1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
|
Usage Guide
===========
This is a detailed guide to using the ``mrcfile`` Python library. For a brief
introduction, see the :doc:`overview <readme>`.
.. testsetup:: *
import os
import shutil
import tempfile
import warnings
import numpy as np
import mrcfile
old_cwd = os.getcwd()
tempdir = tempfile.mkdtemp()
os.chdir(tempdir)
.. testcleanup:: *
os.chdir(old_cwd)
shutil.rmtree(tempdir)
Opening MRC files
-----------------
Normal file access
~~~~~~~~~~~~~~~~~~
MRC files can be opened using the :func:`mrcfile.new` or
:func:`mrcfile.open` functions. These return an instance of the
:class:`~mrcfile.mrcfile.MrcFile` class, which represents an MRC file on disk
and makes the file's header, extended header and data available for read and
write access as `numpy arrays`_. :
.. _numpy arrays: https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
.. doctest::
>>> # First, create a simple dataset
>>> import numpy as np
>>> example_data = np.arange(12, dtype=np.int8).reshape(3, 4)
>>> # Make a new MRC file and write the data to it:
>>> import mrcfile
>>> with mrcfile.new('tmp.mrc') as mrc:
... mrc.set_data(example_data)
...
>>> # The file is now saved on disk. Open it again and check the data:
>>> with mrcfile.open('tmp.mrc') as mrc:
... mrc.data
...
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=int8)
Simple data access
~~~~~~~~~~~~~~~~~~
Alternatively, for even quicker access to MRC data but with minimal control of
the file header, you can use the :func:`~mrcfile.read` and
:func:`~mrcfile.write` functions. These do not return
:class:`~mrcfile.mrcfile.MrcFile` objects but instead work directly with
`numpy arrays`_:
.. doctest::
>>> # First, create a simple dataset
>>> import numpy as np
>>> example_data_2 = np.arange(6, dtype=np.int8).reshape(3, 2)
>>> # Write the data to a new MRC file:
>>> mrcfile.write('tmp2.mrc', example_data_2)
>>> # Read it back:
>>> mrcfile.read('tmp2.mrc')
array([[0, 1],
[2, 3],
[4, 5]], dtype=int8)
Handling compressed files
~~~~~~~~~~~~~~~~~~~~~~~~~
All of the functions shown above can also handle gzip- or bzip2-compressed
files very easily:
.. doctest::
>>> # Make a new gzipped MRC file:
>>> with mrcfile.new('tmp.mrc.gz', compression='gzip') as mrc:
... mrc.set_data(example_data * 2)
...
>>> # Open it again with the normal open function:
>>> with mrcfile.open('tmp.mrc.gz') as mrc:
... mrc.data
...
array([[ 0, 2, 4, 6],
[ 8, 10, 12, 14],
[16, 18, 20, 22]], dtype=int8)
>>> # Same again for bzip2:
>>> with mrcfile.new('tmp.mrc.bz2', compression='bzip2') as mrc:
... mrc.set_data(example_data * 3)
...
>>> # Open it again with the normal read function:
>>> mrcfile.read('tmp.mrc.bz2')
array([[ 0, 3, 6, 9],
[12, 15, 18, 21],
[24, 27, 30, 33]], dtype=int8)
>>> # The write function applies compression automatically based on the file name
>>> mrcfile.write('tmp2.mrc.gz', example_data * 4)
>>> # The new file is opened as a GzipMrcFile object:
>>> with mrcfile.open('tmp2.mrc.gz') as mrc:
... print(mrc)
...
GzipMrcFile('tmp2.mrc.gz', mode='r')
Closing files and writing to disk
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:class:`~mrcfile.mrcfile.MrcFile` objects should be closed when they are
finished with, to ensure any changes are flushed to disk and the underlying
file object is closed:
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # do things...
>>> mrc.close()
As we saw in the examples above, :class:`~mrcfile.mrcfile.MrcFile` objects
support Python's :keyword:`with` statement, which will ensure the file is
closed properly after use (like a normal Python file object). It's generally a
good idea to use :keyword:`with` if possible, but sometimes when running Python
interactively (as in some of these examples), it's more convenient to open a
file and keep using it without having to work in an indented block. If you do
this, remember to close the file at the end!
There's also a :meth:`~mrcfile.mrcinterpreter.MrcInterpreter.flush` method that
writes the MRC data to disk but leaves the file open:
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # do things...
>>> mrc.flush() # make sure changes are written to disk
>>> # continue using the file...
>>> mrc.close() # close the file when finished
MrcFile subclasses
~~~~~~~~~~~~~~~~~~
For most purposes, the top-level functions in :mod:`mrcfile` should be all you
need to open MRC files, but it is also possible to directly instantiate
:class:`~mrcfile.mrcfile.MrcFile` and its subclasses,
:class:`~mrcfile.gzipmrcfile.GzipMrcFile`,
:class:`~mrcfile.bzip2mrcfile.Bzip2MrcFile` and
:class:`~mrcfile.mrcmemmap.MrcMemmap`:
.. doctest::
>>> with mrcfile.mrcfile.MrcFile('tmp.mrc') as mrc:
... mrc
...
MrcFile('tmp.mrc', mode='r')
>>> with mrcfile.gzipmrcfile.GzipMrcFile('tmp.mrc.gz') as mrc:
... mrc
...
GzipMrcFile('tmp.mrc.gz', mode='r')
>>> with mrcfile.bzip2mrcfile.Bzip2MrcFile('tmp.mrc.bz2') as mrc:
... mrc
...
Bzip2MrcFile('tmp.mrc.bz2', mode='r')
>>> with mrcfile.mrcmemmap.MrcMemmap('tmp.mrc') as mrc:
... mrc
...
MrcMemmap('tmp.mrc', mode='r')
File modes
~~~~~~~~~~
:class:`~mrcfile.mrcfile.MrcFile` objects can be opened in three modes: ``r``,
``r+`` and ``w+``. These correspond to the standard Python file modes, so ``r``
opens a file in read-only mode:
.. doctest::
>>> # The default mode is 'r', for read-only access:
>>> mrc = mrcfile.open('tmp.mrc')
>>> mrc
MrcFile('tmp.mrc', mode='r')
>>> mrc.set_data(example_data)
Traceback (most recent call last):
...
ValueError: MRC object is read-only
>>> mrc.close()
``r+`` opens it for reading and writing:
.. doctest::
>>> # Using mode 'r+' allows read and write access:
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> mrc
MrcFile('tmp.mrc', mode='r+')
>>> mrc.set_data(example_data)
>>> mrc.data
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=int8)
>>> mrc.close()
and ``w+`` opens a new, empty file (also for both reading and writing):
.. doctest::
>>> # Mode 'w+' creates a new empty file:
>>> mrc = mrcfile.open('empty.mrc', mode='w+')
>>> mrc
MrcFile('empty.mrc', mode='w+')
>>> mrc.data
array([], dtype=int8)
>>> mrc.close()
The :func:`~mrcfile.new` function is effectively shorthand for
``open(name, mode='w+')``:
.. doctest::
>>> # Make a new file
>>> mrc = mrcfile.new('empty.mrc')
Traceback (most recent call last):
...
ValueError: File 'empty.mrc' already exists; set overwrite=True to overwrite it
>>> # Ooops, we've already got a file with that name!
>>> # If we're sure we want to overwrite it, we can try again:
>>> mrc = mrcfile.new('empty.mrc', overwrite=True)
>>> mrc
MrcFile('empty.mrc', mode='w+')
>>> mrc.close()
.. _permissive-mode:
Permissive read mode
~~~~~~~~~~~~~~~~~~~~
Normally, if an MRC file is badly invalid, an exception is raised when the file
is opened. This can be a problem if we want to, say, open a file and fix a
header problem. To deal with this situation, :func:`~mrcfile.open` and
:func:`~mrcfile.mmap` provide an optional ``permissive`` argument. If this is
set to :data:`True`, problems with the file will cause warnings to be issued
(using Python's :mod:`warnings` module) instead of raising exceptions, and the
file will continue to be interpreted as far as possible.
Let's see an example. First we'll deliberately make an invalid file:
.. doctest::
>>> # Make a new file and deliberately make a mistake in the header
>>> with mrcfile.new('invalid.mrc') as mrc:
... mrc.header.map = b'map ' # standard requires b'MAP '
...
Now when we try to open the file, an exception is raised:
.. doctest::
>>> # Opening an invalid file raises an exception:
>>> mrc = mrcfile.open('invalid.mrc')
Traceback (most recent call last):
...
ValueError: Map ID string not found - not an MRC file, or file is corrupt
If we use permissive mode, we can open the file, and we'll see a warning about
the problem (except that here, we have to catch the warning and print the
message manually, because warnings don't play nicely with doctests!):
.. doctest::
>>> # Opening in permissive mode succeeds, with a warning:
>>> with warnings.catch_warnings(record=True) as w:
... mrc = mrcfile.open('invalid.mrc', permissive=True)
... print(w[0].message)
...
Map ID string not found - not an MRC file, or file is corrupt
Now let's fix the file:
.. doctest::
>>> # Fix the invalid file by correcting the header
>>> with mrcfile.open('invalid.mrc', mode='r+', permissive=True) as mrc:
... mrc.header.map = mrcfile.constants.MAP_ID
...
And now we should be able to open the file again normally:
.. doctest::
>>> # Now we don't need permissive mode to open the file any more:
>>> mrc = mrcfile.open('invalid.mrc')
>>> mrc.close()
The problems that can cause an exception when opening an MRC file are:
#. The header's ``map`` field is not set correctly to confirm the file type. If
the file is otherwise correct, permissive mode should be able to read the
file normally.
#. The machine stamp is invalid and so the file's byte order cannot be
determined. In this case, permissive mode assumes that the byte order is
little-endian and continues trying to read the file. If the file is actually
big-endian, the mode and data size checks will also fail because these
values depend on the endianness and will be nonsensical.
#. The mode number is not recognised. Currently accepted modes are 0, 1, 2, 4, 6
and 12.
#. The data block is not large enough for the specified data type and
dimensions.
In the last two cases, the data block will not be read and the
:attr:`~mrcfile.mrcobject.MrcObject.data` attribute will be set to
:data:`None`.
Fixing invalid files can be quite complicated! This usage guide might be
expanded in future to explain how to analyse and fix problems, or the library
itself might be improved to fix certain problems automatically. For now, if
you have trouble with an invalid file, inspecting the code in this library
might help you to work out how to approach the problem (start with
:meth:`.MrcInterpreter._read_header()`), or you could try asking on the
`CCP-EM mailing list`_ for advice.
.. _CCP-EM mailing list: https://www.jiscmail.ac.uk/CCPEM
A note on axis ordering
~~~~~~~~~~~~~~~~~~~~~~~
``mrcfile`` follows the Python / C-style convention for axis
ordering. This means that the first index is the slowest axis (typically Z for
volume data or Y for images) and the last index is the fastest axis (typically
X), and the numpy arrays are C-contiguous:
.. doctest::
>>> data = mrcfile.read('tmp.mrc')
>>> data
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=int8)
>>> data[1, 0] # x = 0, y = 1
4
>>> data[2, 3] # x = 3, y = 2
11
>>> data.flags.c_contiguous
True
>>> data.flags.f_contiguous
False
Note that this axis order is the opposite of the FORTRAN-style convention that
is used by some other software in structural biology. This can cause confusing
errors!
Using MrcFile objects
---------------------
Accessing the header and data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The header and data arrays can be accessed using the
:attr:`~mrcfile.mrcobject.MrcObject.header`,
:attr:`~mrcfile.mrcobject.MrcObject.extended_header` and
:attr:`~mrcfile.mrcobject.MrcObject.data` attributes:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc')
>>> mrc.header
rec.array((4, 3, 1, ...),
dtype=[('nx', ...)])
>>> mrc.extended_header
array([],
dtype='|V1')
>>> mrc.data
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=int8)
>>> mrc.close()
These attributes are read-only and cannot be assigned to directly, but (unless
the file mode is ``r``) the arrays can be modified in-place:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # A new data array cannot be assigned directly to the data attribute
>>> mrc.data = np.ones_like(example_data)
Traceback (most recent call last):
...
AttributeError: can't set attribute
>>> # But the data can be modified by assigning to a slice or index
>>> mrc.data[0, 0] = 10
>>> mrc.data
array([[10, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=int8)
>>> # All of the data values can be replaced this way, as long as the data
>>> # size, shape and type are not changed
>>> mrc.data[:] = np.ones_like(example_data)
>>> mrc.data
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]], dtype=int8)
>>> mrc.close()
To replace the data or extended header completely, call the
:meth:`~mrcfile.mrcobject.MrcObject.set_data` and
:meth:`~mrcfile.mrcobject.MrcObject.set_extended_header` methods:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> data_3d = np.linspace(-1000, 1000, 20, dtype=np.int16).reshape(2, 2, 5)
>>> mrc.set_data(data_3d)
>>> mrc.data
array([[[-1000, -895, -790, -685, -579],
[ -474, -369, -264, -158, -53]],
[[ 52, 157, 263, 368, 473],
[ 578, 684, 789, 894, 1000]]], dtype=int16)
>>> # Setting a new data array updates the header dimensions to match
>>> mrc.header.nx
array(5, dtype=int32)
>>> mrc.header.ny
array(2, dtype=int32)
>>> mrc.header.nz
array(2, dtype=int32)
>>> # We can also set the extended header in the same way
>>> string_array = np.fromstring(b'The extended header can hold any kind of numpy array', dtype='S52')
>>> mrc.set_extended_header(string_array)
>>> mrc.extended_header
array([b'The extended header can hold any kind of numpy array'],
dtype='|S52')
>>> # Setting the extended header updates the header's nsymbt field to match
>>> mrc.header.nsymbt
array(52, dtype=int32)
>>> mrc.close()
Note that setting an extended header does not automatically set or change the
header's ``exttyp`` field. You should set this yourself to identify the type
of extended header you are using.
For a quick overview of the contents of a file's header, call
:meth:`~mrcfile.mrcobject.MrcObject.print_header`:
.. doctest::
>>> with mrcfile.open('tmp.mrc') as mrc:
... mrc.print_header()
...
nx : 5
ny : 2
nz : 2
mode : 1
nxstart ...
Indexing the extended header
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :attr:`~mrcfile.mrcobject.MrcObject.extended_header` attribute will
return an array of the bytes in the extended header. However, some
extended headers are structured and consist of a sequence of metadata
blocks, where each block corresponds to a single image, or slice, in the
data array. The attribute
:attr:`~mrcfile.mrcobject.MrcObject.indexed_extended_header` is intended
for more convenient access to the indexed sequence of metadata blocks,
for known extended header types. It will return an array with the
appropriate numpy dtype set (or ``None`` in the case of failure) for
an indexable extended header array, even if the extended header itself
contains trailing padding bytes.
Currently two extended header types (``exttyp``) are recognised as indexable:
``'FEI1'`` and ``'FEI2'``. Other types may be added in future.
Voxel size
~~~~~~~~~~
The voxel (or pixel) size in the file can be accessed using the
:attr:`~mrcfile.mrcobject.MrcObject.voxel_size` attribute, which returns a
:class:`numpy record array <numpy.recarray>` with three fields, ``x``, ``y``
and ``z``, for the voxel size in each dimension:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> with mrcfile.open('tmp.mrc') as mrc:
... mrc.voxel_size
...
rec.array((0., 0., 0.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
In a new file, the voxel size is zero by default. To set the voxel size, you
can assign to the :attr:`~mrcfile.mrcobject.MrcObject.voxel_size` attribute,
using a single number (for an isotropic voxel size), a 3-tuple or a single-item
record array with ``x``, ``y`` and ``z`` fields (which must be in that order):
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # Set a new isotropic voxel size:
>>> mrc.voxel_size = 1.0
>>> mrc.voxel_size
rec.array((1., 1., 1.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> # Set an anisotropic voxel size using a tuple:
>>> mrc.voxel_size = (1.0, 2.0, 3.0)
>>> mrc.voxel_size
rec.array((1., 2., 3.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> # And set a different anisotropic voxel size using a record array:
>>> mrc.voxel_size = np.rec.array(( 4., 5., 6.), dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.voxel_size
rec.array((4., 5., 6.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.close()
The sizes are not stored directly in the MRC header, but are calculated when
required from the header's cell and grid size fields. The voxel size can
therefore be changed by altering the cell size:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # Check the current voxel size in X:
>>> mrc.voxel_size.x
array(4., dtype=float32)
>>> # And check the current cell dimensions:
>>> mrc.header.cella
rec.array((20., 10., 6.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> # Now change the cell's X length:
>>> mrc.header.cella.x = 10
>>> # And we see the voxel size has also changed:
>>> mrc.voxel_size.x
array(2., dtype=float32)
>>> mrc.close()
Equivalently, the cell size will be changed if a new voxel size is given:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # Check the current cell dimensions:
>>> mrc.header.cella
rec.array((10., 10., 6.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> # Set a new voxel size:
>>> mrc.voxel_size = 1.0
>>> # And our cell size has been updated:
>>> mrc.header.cella
rec.array((5., 2., 1.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.close()
Because the voxel size array is calculated on demand, assigning back to it
wouldn't work so it's flagged as read-only:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # This doesn't work
>>> mrc.voxel_size.x = 2.0
Traceback (most recent call last):
...
ValueError: assignment destination is read-only
>>> # But you can do this
>>> vsize = mrc.voxel_size.copy()
>>> vsize.x = 2.0
>>> mrc.voxel_size = vsize
>>> mrc.voxel_size
rec.array((2., 1., 1.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.close()
Note that the calculated voxel size will change if the grid size is changed by
replacing the data array:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # Check the current voxel size:
>>> mrc.voxel_size
rec.array((2., 1., 1.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> # And the current data dimensions:
>>> mrc.data.shape
(2, 2, 5)
>>> # Replace the data with an array with a different shape:
>>> mrc.set_data(example_data)
>>> mrc.data.shape
(3, 4)
>>> # ...and the voxel size has changed:
>>> mrc.voxel_size
rec.array((2.5, 0.6666667, 1.),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.close()
Keeping the header and data in sync
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When a new data array is given (using
:meth:`~mrcfile.mrcobject.MrcObject.set_data` or the ``data`` argument to
:func:`mrcfile.new`), the header is automatically updated to ensure the file is
is valid:
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # Check the current data shape and header dimensions match
>>> mrc.data.shape
(3, 4)
>>> mrc.header.nx
array(4, dtype=int32)
>>> mrc.header.nx == mrc.data.shape[-1] # X axis is always the last in shape
True
>>> # Let's also check the maximum value recorded in the header
>>> mrc.header.dmax
array(11., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
True
>>> # Now set a data array with a different shape, and check the header again
>>> mrc.set_data(data_3d)
>>> mrc.data.shape
(2, 2, 5)
>>> mrc.header.nx
array(5, dtype=int32)
>>> mrc.header.nx == mrc.data.shape[-1]
True
>>> # The data statistics are updated as well
>>> mrc.header.dmax
array(1000., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
True
>>> mrc.close()
If the data array is modified in place, for example by editing values
or changing the shape or dtype attributes, the header will no longer be
correct:
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> mrc.data.shape
(2, 2, 5)
>>> # Change the data shape in-place and check the header
>>> mrc.data.shape = (5, 4)
>>> mrc.header.nx == mrc.data.shape[-1]
False
>>> # We'll also change some values and check the data statistics
>>> mrc.data[2:] = 0
>>> mrc.data.max()
0
>>> mrc.header.dmax == mrc.data.max()
False
>>> mrc.close()
Note that the header is deliberately not updated automatically except when
:meth:`~mrcfile.mrcobject.MrcObject.set_data` is called, so if you need to
override any of the automatic header values you can do.
To keep the header in sync with the data, three methods can be used to update
the header:
* :meth:`~mrcfile.mrcobject.MrcObject.update_header_from_data`: This updates
the header's dimension fields, mode, space group and machine stamp to be
consistent with the data array. Because it only inspects the data array's
attributes, this method is fast even for very large arrays.
* :meth:`~mrcfile.mrcobject.MrcObject.update_header_stats`: This updates the
data statistics fields in the header (dmin, dmax, dmean and rms). This method
can be slow with large data arrays because it has to access the full contents
of the array.
* :meth:`~mrcfile.mrcobject.MrcObject.reset_header_stats`: If the data values
have changed and the statistics fields are invalid, but the data array is
very large and you do not want to wait for ``update_header_stats()`` to run,
you can call this method to reset the header's statistics fields to indicate
that the values are undetermined.
The file we just saved had an invalid header, but of course, that's what's used
by ``mrcfile`` to work out how to read the file from disk! When we open the
file again, our change to the shape has disappeared:
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> mrc.data.shape
(2, 2, 5)
>>> # Let's change the shape again, as we did before
>>> mrc.data.shape = (5, 4)
>>> mrc.header.nx == mrc.data.shape[-1]
False
>>> # Now let's update the dimensions:
>>> mrc.update_header_from_data()
>>> mrc.header.nx
array(4, dtype=int32)
>>> mrc.header.nx == mrc.data.shape[-1]
True
>>> # The data statistics are still incorrect:
>>> mrc.header.dmax
array(1000., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
False
>>> # So let's update those as well:
>>> mrc.update_header_stats()
>>> mrc.header.dmax
array(0., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
True
>>> mrc.close()
In general, if you're changing the shape, type or endianness of the data, it's
easiest to use :meth:`~mrcfile.mrcobject.MrcObject.set_data` and the header
will be kept up to date for you. If you start changing values in the data,
remember that the statistics in the header will be out of date until you call
:meth:`~mrcfile.mrcobject.MrcObject.update_header_stats` or
:meth:`~mrcfile.mrcobject.MrcObject.reset_header_stats`.
Data dimensionality
~~~~~~~~~~~~~~~~~~~
MRC files can be used to store several types of data: single images, image
stacks, volumes and volume stacks. These are distinguished by the
dimensionality of the data array and the space group number (the header's
``ispg`` field):
============ ========== ===========
Data type Dimensions Space group
============ ========== ===========
Single image 2 0
Image stack 3 0
Volume 3 1--230 (1 for normal EM data)
Volume stack 4 401--630 (401 for normal EM data)
============ ========== ===========
:class:`~mrcfile.mrcfile.MrcFile` objects have methods to allow easy
identification of the data type:
:meth:`~mrcfile.mrcobject.MrcObject.is_single_image`,
:meth:`~mrcfile.mrcobject.MrcObject.is_image_stack`,
:meth:`~mrcfile.mrcobject.MrcObject.is_volume` and
:meth:`~mrcfile.mrcobject.MrcObject.is_volume_stack`.
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc')
>>> # The file currently contains two-dimensional data
>>> mrc.data.shape
(5, 4)
>>> len(mrc.data.shape)
2
>>> # This is intepreted as a single image
>>> mrc.is_single_image()
True
>>> mrc.is_image_stack()
False
>>> mrc.is_volume()
False
>>> mrc.is_volume_stack()
False
>>> mrc.close()
If a file already contains image or image stack data, new three-dimensional
data is treated as an image stack; otherwise, 3D data is treated as a volume by
default:
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # New 3D data in an existing image file is treated as an image stack:
>>> mrc.set_data(data_3d)
>>> len(mrc.data.shape)
3
>>> mrc.is_volume()
False
>>> mrc.is_image_stack()
True
>>> int(mrc.header.ispg)
0
>>> mrc.close()
>>> # But normally, 3D data is treated as a volume:
>>> mrc = mrcfile.new('tmp.mrc', overwrite=True)
>>> mrc.set_data(data_3d)
>>> mrc.is_volume()
True
>>> mrc.is_image_stack()
False
>>> int(mrc.header.ispg)
1
>>> mrc.close()
Call :meth:`~mrcfile.mrcobject.MrcObject.set_image_stack` and
:meth:`~mrcfile.mrcobject.MrcObject.set_volume` to change the interpretation of
3D data. (Note: as well as changing ``ispg``, these methods also change ``mz``
to be 1 for image stacks and equal to ``nz`` for volumes.)
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # Change the file to represent an image stack:
>>> mrc.set_image_stack()
>>> mrc.is_volume()
False
>>> mrc.is_image_stack()
True
>>> int(mrc.header.ispg)
0
>>> # And now change it back to representing a volume:
>>> mrc.set_volume()
>>> mrc.is_volume()
True
>>> mrc.is_image_stack()
False
>>> int(mrc.header.ispg)
1
>>> mrc.close()
Note that the `MRC format`_ allows the data axes to be swapped using the
header's ``mapc``, ``mapr`` and ``maps`` fields. This library does not attempt
to swap the axes and simply assigns the columns to X, rows to Y and sections to
Z. (The data array is indexed in C style, so data values can be accessed using
``mrc.data[z][y][x]``.) In general, EM data is written using the default
axes, but crystallographic data files might use swapped axes in certain space
groups -- if this might matter to you, you should check the ``mapc``, ``mapr``
and ``maps`` fields after opening the file and consider transposing the data
array if necessary.
.. _MRC format: http://www.ccpem.ac.uk/mrc_format/mrc2014.php
Data types
~~~~~~~~~~
Various numpy `data types`_ can be used for MRC data arrays. The conversions to
MRC mode numbers are:
.. _data types: https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
========= ========
Data type MRC mode
========= ========
float16 12 (see note below)
float32 2
int8 0
int16 1
uint8 6 (note that data will be widened to 16 bits in the file)
uint16 6
complex64 4
========= ========
(Mode 3 and the proposed 4-bit mode 101 are not supported since there are no
corresponding numpy dtypes.)
Note that mode 12 is a proposed extension to the MRC2014 format and is not yet
widely supported by other software. If you need to write float16 data to MRC
files in a compatible way, you should cast to float32 first and use mode 2.
No other data types are accepted, including integer types of more than 16 bits,
or float types of more than 32 bits. Many numpy array creation routines use
int64 or float64 dtypes by default, which means you will need to give a
``dtype`` argument to ensure the array can be used in an MRC file:
.. doctest::
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # This does not work
>>> mrc.set_data(np.zeros((4, 5)))
Traceback (most recent call last):
...
ValueError: dtype 'float64' cannot be converted to an MRC file mode
>>> # But this does
>>> mrc.set_data(np.zeros((4, 5), dtype=np.int16))
>>> mrc.data
array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]], dtype=int16)
>>> mrc.close()
Warning: be careful if you have an existing numpy array in float64, int64 or
int32 data types. If they try to convert them into one of the narrower types
supported by ``mrcfile`` and they contain values outside the range of the
target type, the values will silently overflow. For floating point formats
this can lead to ``inf`` values, and with integers it can lead to entirely
meaningless values. A full discussion of this issue is outside the scope of
this guide; see the numpy documentation for more information.
Dealing with large files
------------------------
``mrcfile`` provides two ways of improving performance when handling large
files: memory mapping and asynchronous (background) opening. `Memory mapping`_
treats the file's data on disk as if it is already in memory, and only actually
loads the data in small chunks when it is needed. `Asynchronous opening`_ uses
a separate thread to open the file, allowing the main thread to carry on with
other work while the file is loaded from disk in parallel.
.. _Memory mapping: https://en.wikipedia.org/wiki/Memory-mapped_file
.. _Asynchronous opening: https://en.wikipedia.org/wiki/Asynchronous_I/O
Which technique is better depends on what you intend to do with the file and
the characteristics of your computer, and it's usually worth testing both
approaches and seeing what works best for your particular task. In general,
memory mapping gives better performance when dealing with a single file,
particularly if the file is very large. If you need to process several files,
asynchronous opening can be faster because you can work on one file while
loading the next one.
Memory-mapped files
~~~~~~~~~~~~~~~~~~~
With very large files, it might be helpful to use the :func:`mrcfile.mmap`
function to open the file, which will open the data as a
:class:`memory-mapped numpy array <numpy.memmap>`. The contents of the array
are only read from disk as needed, so this allows large files to be opened very
quickly. Parts of the data can then be read and written by slicing the array:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> # Let's make a new file to work with (only small for this example!)
>>> mrcfile.write('maybe_large.mrc', example_data)
>>> # Open the file in memory-mapped mode
>>> mrc = mrcfile.mmap('maybe_large.mrc', mode='r+')
>>> # Now read part of the data by slicing
>>> mrc.data[1:3]
memmap([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=int8)
>>> # Set some values by assigning to a slice
>>> mrc.data[1:3,1:3] = 0
>>> # Read the entire array - with large files this might take a while!
>>> mrc.data[:]
memmap([[ 0, 1, 2, 3],
[ 4, 0, 0, 7],
[ 8, 0, 0, 11]], dtype=int8)
>>> mrc.close()
To create new large, empty files quickly, use the :func:`mrcfile.new_mmap`
function. This creates an empty file with a given shape and data mode. An
optional fill value can be provided but filling a very large mmap array can
take a long time, so it's best to use this only when needed. If you plan to
fill the array with other data anyway, it's better to leave the fill value as
:data:`None`. A typical use case would be to create a new file and then fill
it slice by slice:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> # Make a new, empty memory-mapped MRC file
>>> mrc = mrcfile.new_mmap('mmap.mrc', shape=(3, 3, 4), mrc_mode=0)
>>> # Fill each slice with a different value
>>> for val in range(len(mrc.data)):
... mrc.data[val] = val
...
>>> mrc.data[:]
memmap([[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
<BLANKLINE>
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
<BLANKLINE>
[[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]]], dtype=int8)
Asynchronous opening
~~~~~~~~~~~~~~~~~~~~
When processing several files in a row, asynchronous (background) opening can
improve performance by allowing you to open multiple files in parallel. The
:func:`mrcfile.open_async` function starts a background thread to open a file,
and returns a :class:`~mrcfile.future_mrcfile.FutureMrcFile` object which you
can call later to get the file after it's been opened:
.. doctest::
>>> # Open the first example file
>>> mrc1 = mrcfile.open('maybe_large.mrc')
>>> # Start opening the second example file before we process the first
>>> future_mrc2 = mrcfile.open_async('tmp.mrc.gz')
>>> # Now we'll do some calculations with the first file
>>> mrc1.data.sum()
36
>>> # Get the second file from its "Future" container ('result()' will wait
>>> # until the file is ready)
>>> mrc2 = future_mrc2.result()
>>> # Before we process the second file, we'll start the third one opening
>>> future_mrc3 = mrcfile.open_async('tmp.mrc.bz2')
>>> mrc2.data.max()
22
>>> # Finally, we'll get the third file and process it
>>> mrc3 = future_mrc3.result()
>>> mrc3.data
array([[ 0, 3, 6, 9],
[12, 15, 18, 21],
[24, 27, 30, 33]], dtype=int8)
As we saw in that example, calling
:meth:`~mrcfile.future_mrcfile.FutureMrcFile.result` will give us the
:class:`~mrcfile.mrcfile.MrcFile` from the file opening operation. If the file
hasn't been fully opened yet,
:meth:`~mrcfile.future_mrcfile.FutureMrcFile.result` will simply wait until
it's ready. To avoid waiting, call
:meth:`~mrcfile.future_mrcfile.FutureMrcFile.done` to check if it's finished.
Validating MRC files
--------------------
MRC files can be validated with :func:`mrcfile.validate`, which prints an
explanation of what is happening and also returns :data:`True` if the file is
valid or :data:`False` otherwise:
.. doctest::
>>> mrcfile.validate('tmp.mrc')
Checking if tmp.mrc is a valid MRC2014 file...
File appears to be valid.
True
This works equally well for gzip- or bzip2-compressed files:
.. doctest::
>>> mrcfile.validate('tmp.mrc.gz')
Checking if tmp.mrc.gz is a valid MRC2014 file...
File appears to be valid.
True
>>> mrcfile.validate('tmp.mrc.bz2')
Checking if tmp.mrc.bz2 is a valid MRC2014 file...
File appears to be valid.
True
Errors will cause messages to be printed to the console, and
:func:`~mrcfile.validate` will return ``False``:
.. doctest::
>>> # Let's make a file which is valid except for the header's mz value
>>> with mrcfile.new('tmp.mrc', overwrite=True) as mrc:
... mrc.set_data(example_data)
... mrc.header.mz = -1
...
>>> # Now it should fail validation and print a helpful message
>>> mrcfile.validate('tmp.mrc')
Checking if tmp.mrc is a valid MRC2014 file...
Header field 'mz' is negative
False
(More serious errors might also cause warnings to be printed to
:data:`sys.stderr`.)
Normally, messages are printed to :data:`sys.stdout` (as normal for Python
:func:`print` calls). :func:`~mrcfile.validate` has an optional ``print_file``
argument which allows any text stream to be used for the output instead:
.. doctest::
>>> # Create a text stream to capture the output
>>> import io
>>> output = io.StringIO()
>>> # Now validate the file...
>>> mrcfile.validate('tmp.mrc', print_file=output)
False
>>> # ...and check the output separately
>>> print(output.getvalue().strip())
Checking if tmp.mrc is a valid MRC2014 file...
Header field 'mz' is negative
Behind the scenes, :func:`mrcfile.validate` opens the file in :ref:`permissive mode <permissive-mode>`
using :func:`mrcfile.open` and then calls
:meth:`MrcFile.validate() <mrcfile.mrcfile.MrcFile.validate>`. If you already
have an :class:`~mrcfile.mrcfile.MrcFile` open, you can call its
:meth:`validate() <mrcfile.mrcfile.MrcFile.validate>` method directly
to check the file -- but note that the file size test might be inaccurate
unless you call :meth:`~mrcfile.mrcinterpreter.MrcInterpreter.flush` first. To
ensure the file is completely valid, it's best to flush or close the file and
then validate it from scratch using :func:`mrcfile.validate`.
If you find that a file created with this library is invalid, and you haven't
altered anything in the header in a way that might cause problems, please file
a bug report on the `issue tracker`_!
.. _issue tracker: https://github.com/ccpem/mrcfile/issues
Command line usage
------------------
Some ``mrcfile`` functionality is available directly from the command line,
via scripts that are installed along with the package, or in some cases by
running modules with ``python -m``.
(If you've downloaded the source code instead of installing via ``pip``, run
``pip install <path-to-mrcfile>`` or ``python setup.py install`` to make the
command line scripts available.)
Validation
~~~~~~~~~~
MRC files can be validated with the ``mrcfile-validate`` script::
$ mrcfile-validate tests/test_data/EMD-3197.map
Checking if tests/test_data/EMD-3197.map is a valid MRC2014 file...
File does not declare MRC format version 20140 or 20141: nversion = 0
$ # Exit status is 1 if file is invalid
$ echo $?
1
This script wraps the :mod:`mrcfile.validator` module, which can also be called
directly::
$ python -m mrcfile.validator valid_file.mrc
Checking if valid_file.mrc is a valid MRC2014 file...
File appears to be valid.
$ echo $?
0
Multiple file names can be passed to either form of the command, and because
these commands call :func:`mrcfile.validate` behind the scenes, gzip- and
bzip2-compressed files can be validated as well::
$ mrcfile-validate valid_file_1.mrc valid_file_2.mrc.gz valid_file_3.mrc.bz2
Checking if valid_file_1.mrc is a valid MRC2014 file...
File appears to be valid.
Checking if valid_file_2.mrc is a valid MRC2014 file...
File appears to be valid.
Checking if valid_file_3.mrc is a valid MRC2014 file...
File appears to be valid.
Examining MRC headers
~~~~~~~~~~~~~~~~~~~~~
MRC file headers can be printed to the console with the ``mrcfile-header``
script::
$ mrcfile-header tests/test_data/EMD-3197.map
MRC header for tests/test_data/EMD-3197.map:
nx : 20
ny : 20
nz : 20
mode : 2
nxstart : -2
nystart : 0
nzstart : 0
mx : 20
my : 20
mz : 20
cella : (228.0, 228.0, 228.0)
cellb : (90.0, 90.0, 90.0)
...
...
Like ``mrcfile-validate``, this also works for multiple files. If you want to
access the same functionality from within Python, call
:meth:`~mrcfile.mrcobject.MrcObject.print_header` on an open
:class:`~mrcfile.mrcfile.MrcFile` object, or
:func:`mrcfile.command_line.print_headers` with a list of file names.
API overview
------------
Class hierarchy
~~~~~~~~~~~~~~~
The following classes are provided by the mrcfile.py library:
* :class:`~mrcfile.mrcobject.MrcObject`: Represents a generic MRC-like data
object in memory, and provides header, extended header and data arrays and
methods for operating on them.
* :class:`~mrcfile.mrcinterpreter.MrcInterpreter`: Subclass of MrcObject that
can read and/or write its MRC data from arbitrary byte I/O streams
(including Python file objects).
* :class:`~mrcfile.mrcfile.MrcFile`: Subclass of MrcInterpreter that opens a
file from disk to use as its I/O stream. This is the normal class used for
most interactions with MRC files.
* :class:`~mrcfile.gzipmrcfile.GzipMrcFile`: Reads and writes MRC data using
compressed gzip files.
* :class:`~mrcfile.bzip2mrcfile.Bzip2MrcFile`: Reads and writes MRC data using
compressed bzip2 files.
* :class:`~mrcfile.mrcmemmap.MrcMemmap`: Uses a memory-mapped data array, for
fast random access to very large data files. MrcMemmap overrides various
parts of the MrcFile implementation to ensure that the memory-mapped data
array is opened, closed and moved correctly when the data or extended header
array sizes are changed.
MrcFile attributes and methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Attributes:
* :attr:`~mrcfile.mrcobject.MrcObject.header`
* :attr:`~mrcfile.mrcobject.MrcObject.extended_header`
* :attr:`~mrcfile.mrcobject.MrcObject.indexed_extended_header`
* :attr:`~mrcfile.mrcobject.MrcObject.data`
* :attr:`~mrcfile.mrcobject.MrcObject.voxel_size`
Methods:
* :meth:`~mrcfile.mrcobject.MrcObject.set_extended_header`
* :meth:`~mrcfile.mrcobject.MrcObject.set_data`
* :meth:`~mrcfile.mrcobject.MrcObject.is_single_image`
* :meth:`~mrcfile.mrcobject.MrcObject.is_image_stack`
* :meth:`~mrcfile.mrcobject.MrcObject.is_volume`
* :meth:`~mrcfile.mrcobject.MrcObject.is_volume_stack`
* :meth:`~mrcfile.mrcobject.MrcObject.set_image_stack`
* :meth:`~mrcfile.mrcobject.MrcObject.set_volume`
* :meth:`~mrcfile.mrcobject.MrcObject.update_header_from_data`
* :meth:`~mrcfile.mrcobject.MrcObject.update_header_stats`
* :meth:`~mrcfile.mrcobject.MrcObject.reset_header_stats`
* :meth:`~mrcfile.mrcobject.MrcObject.print_header`
* :meth:`~mrcfile.mrcfile.MrcFile.validate`
* :meth:`~mrcfile.mrcinterpreter.MrcInterpreter.flush`
* :meth:`~mrcfile.mrcinterpreter.MrcInterpreter.close`
|