1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
# Copyright (c) 2016, Science and Technology Facilities Council
# This software is distributed under a BSD licence. See LICENSE.txt.
"""
mrcobject
---------
Module which exports the :class:`MrcObject` class.
Classes:
:class:`MrcObject`: An object representing image or volume data in the MRC
format.
"""
# Import Python 3 features for future-proofing
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from datetime import datetime
import warnings
import numpy as np
from . import utils
from .dtypes import (HEADER_DTYPE, VOXEL_SIZE_DTYPE, NSTART_DTYPE,
get_ext_header_dtype)
from .constants import (MAP_ID, IMAGE_STACK_SPACEGROUP, VOLUME_SPACEGROUP,
VOLUME_STACK_SPACEGROUP)
class MrcObject(object):
"""An object representing image or volume data in the MRC format.
The header, extended header and data are stored as numpy arrays and
exposed as read-only attributes. To replace the data or extended header,
call :meth:`set_data` or :meth:`set_extended_header`. The header cannot be
replaced but can be modified in place.
Voxel size is exposed as a writeable attribute, but is calculated
on-the-fly from the header's ``cella`` and ``mx``/``my``/``mz`` fields.
Three-dimensional data can represent either a stack of 2D images, or a 3D
volume. This is indicated by the header's ``ispg`` (space group) field,
which is set to 0 for image data and >= 1 for volume data. The
:meth:`is_single_image`, :meth:`is_image_stack`, :meth:`is_volume` and
:meth:`is_volume_stack` methods can be used to identify the type of
information stored in the data array. For 3D data, the
:meth:`set_image_stack` and :meth:`set_volume` methods can be used to
switch between image stack and volume interpretations of the data.
If the data contents have been changed, you can use the
:meth:`update_header_from_data` and :meth:`update_header_stats` methods to
make the header consistent with the data. These methods are called
automatically if the data array is replaced by calling :meth:`set_data`.
:meth:`update_header_from_data` is fast, even with very large data arrays,
because it only examines the shape and type of the data array.
:meth:`update_header_stats` calculates statistics from all items in the
data array and so can be slow for very large arrays. If necessary, the
:meth:`reset_header_stats` method can be called to set the header fields to
indicate that the statistics are undetermined.
Attributes:
* :attr:`header`
* :attr:`extended_header`
* :attr:`indexed_extended_header`
* :attr:`data`
* :attr:`voxel_size`
* :attr:`nstart`
Methods:
* :meth:`set_extended_header`
* :meth:`set_data`
* :meth:`is_single_image`
* :meth:`is_image_stack`
* :meth:`is_volume`
* :meth:`is_volume_stack`
* :meth:`set_image_stack`
* :meth:`set_volume`
* :meth:`update_header_from_data`
* :meth:`update_header_stats`
* :meth:`reset_header_stats`
* :meth:`print_header`
* :meth:`get_labels`
* :meth:`add_label`
Attributes and methods relevant to subclasses:
* ``_read_only``
* :meth:`_check_writeable`
* :meth:`_create_default_attributes`
* :meth:`_close_data`
* :meth:`_set_new_data`
"""
def __init__(self, **kwargs):
"""Initialise a new :class:`MrcObject`.
This initialiser deliberately avoids creating any arrays and simply
sets the header, extended header and data attributes to :data:`None`.
This allows subclasses to call :meth:`__init__` at the start of their
initialisers and then set the attributes themselves, probably by
reading from a file, or by calling :meth:`_create_default_attributes`
for a new empty object.
Note that this behaviour might change in future: this initialiser could
take optional arguments to allow the header and data to be provided
by the caller, or might create the standard empty defaults rather than
setting the attributes to :data:`None`.
"""
super(MrcObject, self).__init__(**kwargs)
# Set empty default attributes
self._header = None
self._extended_header = None
self._data = None
self._read_only = False
def _check_writeable(self):
"""Check that this MRC object is writeable.
Raises:
:exc:`ValueError`: If this object is read-only.
"""
if self._read_only:
raise ValueError('MRC object is read-only')
def _create_default_attributes(self):
"""Set valid default values for the header and data attributes."""
self._create_default_header()
self._extended_header = np.empty(0, dtype='V1')
self._set_new_data(np.empty(0, dtype=np.int8))
def _create_default_header(self):
"""Create a default MRC file header.
The header is initialised with standard file type and version
information, default values for some essential fields, and zeros
elsewhere. The first text label is also set to indicate the file was
created by this module.
"""
self._header = np.zeros(shape=(), dtype=HEADER_DTYPE).view(np.recarray)
header = self._header
header.map = MAP_ID
header.nversion = 20141 # current MRC 2014 format version
header.machst = utils.machine_stamp_from_byte_order(header.mode.dtype.byteorder)
# Default space group is P1
header.ispg = VOLUME_SPACEGROUP
# Standard cell angles all 90.0 degrees
default_cell_angle = 90.0
header.cellb.alpha = default_cell_angle
header.cellb.beta = default_cell_angle
header.cellb.gamma = default_cell_angle
# (this can also be achieved by assigning a 3-tuple to header.cellb
# directly but using the sub-fields individually is easier to read and
# understand)
# Standard axes: columns = X, rows = Y, sections = Z
header.mapc = 1
header.mapr = 2
header.maps = 3
time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
header.label[0] = '{0:40s}{1:>39s} '.format('Created by mrcfile.py',
time)
header.nlabl = 1
self.reset_header_stats()
@property
def header(self):
"""Get the header as a :class:`numpy record array <numpy.recarray>`."""
return self._header
@property
def extended_header(self):
"""Get the extended header as a :class:`numpy array <numpy.ndarray>`.
The dtype will be void (raw data, dtype ``V'``). If the actual data type
of the extended header is known, the dtype of the array can be changed
to match. For supported types (e.g. ``'FEI1'`` and ``'FEI2'``), the
indexed part of the extended header (excluding any zero padding) can be
accessed using :meth:`indexed_extended_header`.
The extended header may be modified in place. To replace it completely,
call :meth:`set_extended_header`.
"""
return self._extended_header
@property
def indexed_extended_header(self):
"""Get the indexed part of the extended header as a
:class:`numpy array <numpy.ndarray>` with the appropriate dtype set.
Currently only ``'FEI1'`` and ``'FEI2'`` extended headers are supported.
Modifications to the indexed extended header will not change the
extended header data recorded in this :class:`MrcObject`. If the
extended header type is unrecognised or extended header data is not of
sufficient length a warning will be produced and the indexed extended
header will be None.
"""
# Use the header's byte order for the extended header
dtype = get_ext_header_dtype(self.header.exttyp,
self.header.mode.dtype.byteorder)
# Interpret one element
try:
if self.extended_header.nbytes < dtype.itemsize:
raise ValueError
first = self.extended_header[0:dtype.itemsize]
first.dtype = dtype
if first["Metadata size"][0] != dtype.itemsize:
raise ValueError
except ValueError:
warnings.warn("The header has exttyp '{}' but the extended header "
"cannot be interpreted as that type"
.format(self.header.exttyp), RuntimeWarning)
return None
nbytes = int(self.header["nz"]) * dtype.itemsize
try:
if self.extended_header.nbytes < nbytes:
raise ValueError
full = self.extended_header[0:nbytes]
full.dtype = dtype
except ValueError:
warnings.warn("The header has exttyp '{}' but the extended header "
"cannot be interpreted as that type"
.format(self.header.exttyp), RuntimeWarning)
return None
return full
def set_extended_header(self, extended_header):
"""Replace the extended header.
If you set the extended header you should also set the
``header.exttyp`` field to indicate the type of extended header.
Raises:
:exc:`ValueError`: If the new extended header has more than
2,147,483,647 bytes (and therefore its size cannot be stored
in the header).
"""
self._check_writeable()
if extended_header.nbytes > np.iinfo(np.int32).max:
raise ValueError("New extended header is too large! It has {} "
"bytes. The maximum allowed is {}."
.format(extended_header.nbytes,
np.iinfo(np.int32).max))
self._extended_header = extended_header
self.header.nsymbt = extended_header.nbytes
@property
def data(self):
"""Get the data as a :class:`numpy array <numpy.ndarray>`."""
return self._data
def set_data(self, data):
"""Replace the data array.
This replaces the current data with the given array (or a copy of it),
and updates the header to match the new data dimensions. The data
statistics (min, max, mean and rms) stored in the header will also be
updated.
Raises:
:exc:`ValueError`: if the new data has a dimension larger than
2,147,483,647 (and therefore its size cannot be stored in the
header).
Warns:
RuntimeWarning: If the data array contains Inf or NaN values.
"""
self._check_writeable()
# Check if the new data's dtype is valid without changes
mode = utils.mode_from_dtype(data.dtype)
new_dtype = (utils.dtype_from_mode(mode)
.newbyteorder(data.dtype.byteorder))
for dim in data.shape:
if dim > np.iinfo(np.int32).max:
raise ValueError("New data array is too large! Found a "
"dimension of size {}. The maximum allowed "
"is {}."
.format(dim, np.iinfo(np.int32).max))
# Set new_dtype to None if it is the same type as the original array,
# to avoid numpy >= 1.24 copying the array unnecessarily
if new_dtype == data.dtype:
new_dtype = None
# Copy the data if necessary to ensure correct dtype and C ordering
new_data = np.ascontiguousarray(data, dtype=new_dtype)
# Replace the old data array with the new one, and update the header
self._close_data()
self._set_new_data(new_data)
self.update_header_from_data()
self.update_header_stats()
def _close_data(self):
"""Close the data array."""
self._data = None
def _set_new_data(self, data):
"""Replace the data array with a new one.
The new data array is not checked - it must already be valid for use in
an MRC file.
"""
self._data = data
@property
def voxel_size(self):
"""Get or set the voxel size in angstroms.
The voxel size is returned as a structured NumPy :class:`record array
<numpy.recarray>` with three fields (x, y and z). For example:
>>> mrc.voxel_size
rec.array((0.44825, 0.3925, 0.45874998),
dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.voxel_size.x
array(0.44825, dtype=float32)
Note that changing the voxel_size array in-place will *not* change the
voxel size in the file -- to prevent this being overlooked
accidentally, the writeable flag is set to :data:`False` on the
voxel_size array.
To set the voxel size, assign a new value to the voxel_size attribute.
You may give a single number, a 3-tuple ``(x, y ,z)`` or a modified
version of the voxel_size array. The following examples are all
equivalent:
>>> mrc.voxel_size = 1.0
>>> mrc.voxel_size = (1.0, 1.0, 1.0)
>>> vox_sizes = mrc.voxel_size
>>> vox_sizes.flags.writeable = True
>>> vox_sizes.x = 1.0
>>> vox_sizes.y = 1.0
>>> vox_sizes.z = 1.0
>>> mrc.voxel_size = vox_sizes
"""
x = self.header.cella.x / self.header.mx
y = self.header.cella.y / self.header.my
z = self.header.cella.z / self.header.mz
sizes = np.rec.array((x, y, z), VOXEL_SIZE_DTYPE)
sizes.flags.writeable = False
return sizes
@voxel_size.setter
def voxel_size(self, voxel_size):
self._check_writeable()
try:
# First, assume we have a single numeric value
sizes = (float(voxel_size),) * 3
except TypeError:
try:
# Not a single value. Next, if voxel_size is an array (as
# produced by the voxel_size getter), item() gives a 3-tuple
sizes = voxel_size.item()
except AttributeError:
# If the item() method doesn't exist, assume we have a 3-tuple
sizes = voxel_size
self._set_voxel_size(*sizes)
def _set_voxel_size(self, x_size, y_size, z_size):
"""Set the voxel size.
Args:
x_size: The voxel size in the X direction, in angstroms
y_size: The voxel size in the Y direction, in angstroms
z_size: The voxel size in the Z direction, in angstroms
"""
self.header.cella.x = x_size * self.header.mx
self.header.cella.y = y_size * self.header.my
self.header.cella.z = z_size * self.header.mz
@property
def nstart(self):
"""Get or set the grid start locations.
This provides a convenient way to get and set the values of the
header's ``nxstart``, ``nystart`` and ``nzstart`` fields. Note that
these fields are integers and are measured in voxels, not angstroms.
The start locations are returned as a structured NumPy :class:`record
array <numpy.recarray>` with three fields (x, y and z). For example:
>>> mrc.header.nxstart
array(0, dtype=int32)
>>> mrc.header.nystart
array(-21, dtype=int32)
>>> mrc.header.nzstart
array(-12, dtype=int32)
>>> mrc.nstart
rec.array((0, -21, -12),
dtype=[('x', '<i4'), ('y', '<i4'), ('z', '<i4')])
>>> mrc.nstart.y
array(-21, dtype=int32)
Note that changing the nstart array in-place will *not* change the
values in the file -- to prevent this being overlooked accidentally,
the writeable flag is set to :data:`False` on the nstart array.
To set the start locations, assign a new value to the nstart
attribute. You may give a single number, a 3-tuple ``(x, y ,z)`` or a
modified version of the nstart array. The following examples are all
equivalent:
>>> mrc.nstart = -150
>>> mrc.nstart = (-150, -150, -150)
>>> starts = mrc.nstart
>>> starts.flags.writeable = True
>>> starts.x = -150
>>> starts.y = -150
>>> starts.z = -150
>>> mrc.nstart = starts
"""
x = self.header.nxstart
y = self.header.nystart
z = self.header.nzstart
nstart = np.rec.array((x, y, z), NSTART_DTYPE)
nstart.flags.writeable = False
return nstart
@nstart.setter
def nstart(self, nstart):
self._check_writeable()
try:
# First, assume we have a single numeric value
starts = (int(nstart),) * 3
except TypeError:
try:
# Not a single value. Next, if nstart is an array (as
# produced by the nstart getter), item() gives a 3-tuple
starts = nstart.item()
except AttributeError:
# If the item() method doesn't exist, assume we have a 3-tuple
starts = nstart
self._set_nstart(*starts)
def _set_nstart(self, nxstart, nystart, nzstart):
"""Set the grid start locations.
Args:
nxstart: The location of the first column in the unit cell
nystart: The location of the first row in the unit cell
nzstart: The location of the first section in the unit cell
"""
self.header.nxstart = nxstart
self.header.nystart = nystart
self.header.nzstart = nzstart
def is_single_image(self):
"""Identify whether the file represents a single image.
Returns:
:data:`True` if the data array is two-dimensional.
"""
return self.data.ndim == 2
def is_image_stack(self):
"""Identify whether the file represents a stack of images.
Returns:
:data:`True` if the data array is three-dimensional and the space group
is zero.
"""
return (self.data.ndim == 3
and self.header.ispg == IMAGE_STACK_SPACEGROUP)
def is_volume(self):
"""Identify whether the file represents a volume.
Returns:
:data:`True` if the data array is three-dimensional and the space
group is not zero.
"""
return (self.data.ndim == 3
and self.header.ispg != IMAGE_STACK_SPACEGROUP)
def is_volume_stack(self):
"""Identify whether the file represents a stack of volumes.
Returns:
:data:`True` if the data array is four-dimensional.
"""
return self.data.ndim == 4
def set_image_stack(self):
"""Change three-dimensional data to represent an image stack.
This method changes the space group number (``header.ispg``) to zero.
Raises:
:exc:`ValueError`: If the data array is not three-dimensional.
"""
self._check_writeable()
if self.data.ndim != 3:
raise ValueError('Only 3D data can be changed into an image stack')
self.header.ispg = IMAGE_STACK_SPACEGROUP
self.header.mz = 1
def set_volume(self):
"""Change three-dimensional data to represent a volume.
If the space group was previously zero (representing an image stack),
this method sets it to one. Otherwise the space group is not changed.
Raises:
:exc:`ValueError`: If the data array is not three-dimensional.
"""
self._check_writeable()
if self.data.ndim != 3:
raise ValueError('Only 3D data can be changed into a volume')
if self.is_image_stack():
self.header.ispg = VOLUME_SPACEGROUP
self.header.mz = self.header.nz
def update_header_from_data(self):
"""Update the header from the data array.
This function updates the header byte order and machine stamp to match
the byte order of the data. It also updates the file mode, space group
and the dimension fields ``nx``, ``ny``, ``nz``, ``mx``, ``my`` and
``mz``.
If the data is 2D, the space group is set to 0 (image stack). For 3D
data the space group is not changed, and for 4D data the space group is
set to 401 (simple P1 volume stack) unless it is already in the volume
stack range (401--630).
This means that new 3D data will be treated as an image stack if the
previous data was a single image or image stack, or as a volume if the
previous data was a volume or volume stack.
Note that this function does *not* update the data statistics fields in
the header (``dmin``, ``dmax``, ``dmean`` and ``rms``). Use the
:meth:`update_header_stats` function to update the statistics.
(This is for performance reasons -- updating the statistics can take a
long time for large data sets, but updating the other header
information is always fast because only the type and shape of the data
array need to be inspected.)
"""
self._check_writeable()
# Check the dtype is one we can handle and update mode to match
header = self.header
header.mode = utils.mode_from_dtype(self.data.dtype)
# Ensure header byte order and machine stamp match the data's byte order
data_byte_order = self.data.dtype.byteorder
header_byte_order = header.mode.dtype.byteorder
if (data_byte_order != '|'
and not utils.byte_orders_equal(data_byte_order, header_byte_order)):
header.byteswap(True)
header.dtype = header.dtype.newbyteorder(data_byte_order)
header.machst = utils.machine_stamp_from_byte_order(header.mode.dtype
.byteorder)
shape = self.data.shape
axes = len(shape)
if axes == 2:
# Single image. Space group 0, nz = mz = 1
header.ispg = IMAGE_STACK_SPACEGROUP
header.nx = header.mx = shape[1]
header.ny = header.my = shape[0]
header.nz = header.mz = 1
elif axes == 3:
header.nx = header.mx = shape[2]
header.ny = header.my = shape[1]
if header.ispg == IMAGE_STACK_SPACEGROUP:
# Image stack. mz = 1, nz = sections in the volume
header.mz = 1
header.nz = shape[0]
else:
# Volume. nz = mz = sections in the volume
header.nz = header.mz = shape[0]
elif axes == 4:
# Volume stack. Space group 401, mz = secs per vol, nz = total sections
if not utils.spacegroup_is_volume_stack(header.ispg):
header.ispg = VOLUME_STACK_SPACEGROUP
header.nx = header.mx = shape[3]
header.ny = header.my = shape[2]
header.mz = shape[1]
header.nz = shape[0] * shape[1]
else:
raise ValueError('Data must be 2-, 3- or 4-dimensional')
def update_header_stats(self):
"""Update the header's ``dmin``, ``dmax``, ``dmean`` and ``rms`` fields
from the data.
Note that this can take some time with large files, particularly with
files larger than the currently available memory.
Warns:
RuntimeWarning: If the data array contains Inf or NaN values.
"""
self._check_writeable()
if self.data.size > 0:
# Header stats are always in float32. If we have complex data, this doesn't
# make sense so just set rms and leave min, max and mean at their default
# un-set values
if np.iscomplexobj(self.data):
# Avoid ComplexWarning by explicitly taking the real part
self.header.rms = np.float32(self.data.std().real)
else:
min = self.data.min()
max = self.data.max()
if np.isnan(min):
warnings.warn("Data array contains NaN values", RuntimeWarning)
if np.isinf(min) or np.isinf(max):
warnings.warn("Data array contains infinite values", RuntimeWarning)
self.header.dmin = np.float32(min)
self.header.dmax = np.float32(max)
self.header.dmean = self.data.mean(dtype=np.float32)
self.header.rms = self.data.std(dtype=np.float32)
else:
self.reset_header_stats()
def reset_header_stats(self):
"""Set the header statistics to indicate that the values are unknown."""
self._check_writeable()
self.header.dmin = 0
self.header.dmax = -1
self.header.dmean = -2
self.header.rms = -1
def print_header(self, print_file=None):
"""Print the contents of all header fields.
Args:
print_file: The output text stream to use for printing the header.
This is passed directly to the ``file`` argument of Python's
:func:`print` function. The default is :data:`None`, which
means output will be printed to :data:`sys.stdout`.
"""
for item in self.header.dtype.names:
print('{0:15s} : {1}'.format(item, self.header[item]),
file=print_file)
def get_labels(self):
"""Get the labels from the MRC header.
Up to ten labels are stored in the header as arrays of 80 bytes. This method
returns the labels as Python strings, filtered to remove non-printable
characters. To access the raw bytes (including any non-printable characters) use
the ``header.label`` attribute (and note that ``header.nlabl`` stores the number
of labels currently set).
Returns:
The labels, as a list of strings. The list will contain between 0 and 10
items, each containing up to 80 characters.
"""
return [
utils.printable_string_from_bytes(label)
for label in self.header.label[:self.header.nlabl]
]
def add_label(self, label):
"""Add a label to the MRC header.
The new label will be stored after any labels already in the header. If all ten
labels are already in use, an exception will be raised.
Future versions of this method might add checks to ensure that labels containing
valid text are not overwritten even if the ``nlabl`` value is incorrect.
Args:
label: The label value to store, as a string containing only printable
ASCII characters.
Raises:
:exc:`ValueError`: If the label is longer than 80 bytes or contains
non-printable or non-ASCII characters.
:exc:`IndexError`: If the file already contains 10 labels and so an
additional label cannot be stored.
"""
if not utils.is_printable_ascii(label):
raise ValueError("Label contains non-printable or non-ASCII characters")
label_bytes = utils.bytes_from_string(label)
if len(label_bytes) > 80:
raise ValueError("Label value has more than 80 bytes")
self.header.label[self.header.nlabl] = label
self.header.nlabl += 1
def validate(self, print_file=None):
"""Validate this MrcObject.
This method runs a series of tests to check whether this object
complies strictly with the MRC2014 format specification:
#. MRC format ID string: The header's ``map`` field must contain
"MAP ".
#. Machine stamp: The machine stamp should contain one of
``0x44 0x44 0x00 0x00``, ``0x44 0x41 0x00 0x00`` or
``0x11 0x11 0x00 0x00``.
#. MRC mode: the ``mode`` field should be one of the supported mode
numbers: 0, 1, 2, 4, 6 or 12. (Note that MRC modes 3 and 101 are
also valid according to the MRC 2014 specification but are not
supported by mrcfile.)
#. Map and cell dimensions: The header fields ``nx``, ``ny``, ``nz``,
``mx``, ``my``, ``mz``, ``cella.x``, ``cella.y`` and ``cella.z``
must all be positive numbers.
#. Axis mapping: Header fields ``mapc``, ``mapr`` and ``maps`` must
contain the values 1, 2, and 3 (in any order).
#. Volume stack dimensions: If the spacegroup is in the range 401--630,
representing a volume stack, the ``nz`` field should be exactly
divisible by ``mz`` to represent the number of volumes in the stack.
#. Header labels: The ``nlabl`` field should be set to indicate the
number of labels in use, and the labels in use should appear first
in the label array (that is, there should be no blank labels between
text-filled ones).
#. MRC format version: The ``nversion`` field should be 20140 or 20141
for compliance with the MRC2014 standard.
#. Extended header type: If an extended header is present, the
``exttyp`` field should be set to indicate the type of extended
header.
#. Data statistics: The statistics in the header should be correct for
the actual data, or marked as undetermined.
Args:
print_file: The output text stream to use for printing messages
about the validation. This is passed directly to the ``file``
argument of Python's :func:`print` function. The default is
:data:`None`, which means output will be printed to
:data:`sys.stdout`.
Returns:
:data:`True` if this MrcObject is valid, or :data:`False` if it
does not meet the MRC format specification in any way.
"""
valid = True
def log(message):
print(message, file=print_file)
# Check map ID string
if self.header.map != MAP_ID:
log("Map ID string is incorrect: found {0}, should be {1}"
.format(self.header.map, MAP_ID))
valid = False
# Check machine stamp
try:
utils.byte_order_from_machine_stamp(self.header.machst)
except ValueError:
pretty_bytes = utils.pretty_machine_stamp(self.header.machst)
log("Invalid machine stamp: " + pretty_bytes)
valid = False
# Check mode is valid
try:
utils.dtype_from_mode(self.header.mode)
except ValueError:
log("Invalid mode: {0}".format(self.header.mode))
valid = False
# Check map dimensions and other fields are non-negative
for field in ['nx', 'ny', 'nz', 'mx', 'my', 'mz', 'ispg', 'nlabl']:
if self.header[field] < 0:
log("Header field '{0}' is negative".format(field))
valid = False
# Check cell dimensions are non-negative
for field in ['x', 'y', 'z']:
if self.header.cella[field] < 0:
log("Cell dimension '{0}' is negative".format(field))
valid = False
# Check axis mapping is valid
axes = set()
for field in ['mapc', 'mapr', 'maps']:
axes.add(int(self.header[field]))
if axes != {1, 2, 3}:
log("Invalid axis mapping: found {0}, should be [1, 2, 3]"
.format(sorted(list(axes))))
valid = False
# Check mz value for volume stacks
if utils.spacegroup_is_volume_stack(self.header.ispg):
if self.header.nz % self.header.mz != 0:
log("Error in dimensions for volume stack: nz should be "
"divisible by mz. Found nz = {0}, mz = {1})"
.format(self.header.nz, self.header.mz))
valid = False
# Check nlabl is correct
count = 0
seen_empty_label = False
for label in self.header.label:
if len(label.strip()) > 0:
count += 1
if seen_empty_label:
log("Error in header labels: empty labels appear between "
"text-containing labels")
valid = False
else:
seen_empty_label = True
if count != self.header.nlabl:
log("Error in header labels: nlabl is {0} "
"but {1} labels contain text".format(self.header.nlabl, count))
valid = False
# Check MRC format version
if self.header.nversion not in (20140, 20141):
log("File does not declare MRC format version 20140 or 20141: nversion ="
" {0}".format(self.header.nversion))
valid = False
# Check extended header type is set to a known value
valid_exttypes = [b'CCP4', b'MRCO', b'SERI', b'AGAR', b'FEI1', b'FEI2', b'HDF5']
if self.header.nsymbt > 0 and self.header.exttyp not in valid_exttypes:
log("Extended header type is undefined or unrecognised: exttyp = "
"'{0}'".format(self.header.exttyp.item().decode('ascii')))
valid = False
# Check data statistics
real_rms = real_min = real_max = real_mean = 0
if self.header.rms >= 0:
if self.data is not None and len(self.data > 0):
real_rms = self.data.std()
if not np.isclose(real_rms, self.header.rms, rtol=0.01):
log("Data statistics appear to be inaccurate: RMS deviation is {0} but"
" the value in the header is {1}".format(real_rms, self.header.rms))
valid = False
if self.header.dmin < self.header.dmax:
if self.data is not None and len(self.data > 0):
real_min = self.data.min()
real_max = self.data.max()
if self.header.dmin != real_min:
log("Data statistics appear to be inaccurate: minimum is {0} but the"
" value in the header is {1}".format(real_min, self.header.dmin))
valid = False
if self.header.dmax != real_max:
log("Data statistics appear to be inaccurate: maximum is {0} but the"
" value in the header is {1}".format(real_max, self.header.dmax))
valid = False
if self.header.dmean > min(self.header.dmin, self.header.dmax):
if self.data is not None and len(self.data > 0):
real_mean = self.data.mean(dtype=np.float64)
if not np.isclose(real_mean, self.header.dmean, rtol=0.01):
log("Data statistics appear to be inaccurate: mean is {0} but the"
" value in the header is {1}".format(real_mean, self.header.dmean))
valid = False
return valid
|