1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
Benchmarks
==========
.. note::
Benchmarks are *hard*.
Repeatedly calling the same function in a tight loop will lead to the
instruction cache staying hot and branches being highly predictable. That's
not representative of real world access patterns. It's also hard to write a
nonbiased benchmark. I wrote msgspec, naturally whatever benchmark I
publish it's going to perform well in.
Even so, people like to see benchmarks. I've tried to be as nonbiased as I
can be, and the results hopefully indicate a few tradeoffs you make when
you choose different serialization formats. I encourage you to write your
own benchmarks before making these decisions.
In all cases benchmarks were run on my local development machine (a ~2020
x86 Linux laptop) using CPython 3.11.
JSON Serialization & Validation
-------------------------------
This benchmark covers the common case when working with ``msgspec`` or other
validation libraries. It measures two things:
- Decoding some JSON input, validating it against a schema, and converting it
into user-friendly python objects.
- Encoding these same python objects back into JSON.
The data we're working with has the following schema (defined here using
`msgspec.Struct` types):
.. code-block:: python
import enum
import datetime
import msgspec
class Permissions(enum.Enum):
READ = "READ"
WRITE = "WRITE"
READ_WRITE = "READ_WRITE"
class File(msgspec.Struct, kw_only=True, tag="file"):
name: str
created_by: str
created_at: datetime.datetime
updated_by: str | None = None
updated_at: datetime.datetime | None = None
nbytes: int
permissions: Permissions
class Directory(msgspec.Struct, kw_only=True, tag="directory"):
name: str
created_by: str
created_at: datetime.datetime
updated_by: str | None = None
updated_at: datetime.datetime | None = None
contents: list[File | Directory]
The libraries we're comparing are the following:
- msgspec_ (0.18.5)
- mashumaro_ (3.11)
- pydantic_ (both 1.10.13 and 2.5.2)
- cattrs_ (23.2.3)
Each benchmark creates a message containing one or more ``File``/``Directory``
instances, then then serializes, deserializes, and validates it in a loop.
The full benchmark source can be found
`here <https://github.com/jcrist/msgspec/tree/main/benchmarks/bench_validation>`__.
.. raw:: html
<div id="bench-validate" style="width:75%"></div>
In this benchmark ``msgspec`` is ~6x faster than ``mashumaro``, ~10x faster
than ``cattrs``, and ~12x faster than ``pydantic`` V2, and ~85x faster than
``pydantic`` V1.
This plot shows the performance benefit of performing type validation during
message decoding (as done by ``msgspec``) rather than as a secondary step with
a third-party library like cattrs_ or pydantic_ V1. Validating after decoding
is slower for two reasons:
- It requires traversing over the entire output structure a second time (which
can be slow due to pointer chasing)
- It may require converting some python objects to their desired output types
(e.g. converting a decoded `dict` to a pydantic_ model), resulting in
allocating many temporary python objects.
In contrast, libraries like ``msgspec`` that validate during decoding have none
of these issues. Only a single pass over the decoded data is taken, and the
specified output types are created correctly the first time, avoiding the need
for additional unnecessary allocations.
This benefit also shows up in the memory usage for the same benchmark:
.. raw:: html
<div id="bench-validate-memory" style="width:75%"></div>
Here we compare the peak increase in memory usage (RSS) after loading the
schemas and data. ``msgspec``'s small library size, schema representation, and
in-memory state means it uses a fraction of the memory of other tools.
.. _json-benchmark:
JSON Serialization
------------------
``msgspec`` includes its own high performance JSON library, which may be used
by itself as a replacement for the standard library's `json.dumps`/`json.loads`
functions. Here we compare msgspec's JSON implementation against several other
popular Python JSON libraries.
- msgspec_ (0.18.5)
- orjson_ (3.9.10)
- ujson_ (5.9.0)
- rapidjson_ (1.13)
- simdjson_ (5.0.2)
- json_ (standard library)
The full benchmark source can be found
`here <https://github.com/jcrist/msgspec/tree/main/benchmarks/bench_encodings.py>`__.
.. raw:: html
<div id="bench-json" style="width:75%"></div>
In this case ``msgspec structs`` (which measures ``msgspec`` with
``msgspec.Struct`` schemas pre-defined) is the fastest. When used without
schemas, ``msgspec`` is on-par with ``orjson`` (the next fastest JSON library).
This shows that ``msgspec`` is able to decode JSON faster when a schema is
provided. Due to a more efficient in memory representation, JSON decoding AND
schema validation with ``msgspec`` than just JSON decoding alone.
.. _msgpack-benchmark:
MessagePack Serialization
-------------------------
Likewise, ``msgspec`` includes its own high performance MessagePack_ library,
which may be used by itself without requiring usage of any of msgspec's
validation machinery. Here we compare msgspec's MessagePack implementation
against several other popular Python MessagePack libraries.
- msgspec_ (0.18.5)
- msgpack_ (1.0.7)
- ormsgpack_ (1.4.1)
.. raw:: html
<div id="bench-msgpack" style="width:75%"></div>
As with the JSON benchmark above, ``msgspec`` with a schema provided (``msgspec
structs``) is faster than ``msgspec`` with no schema. In both cases though
``msgspec`` is measurably faster than other Python MessagePack libraries like
``msgpack`` or ``ormsgpack``.
JSON Serialization - Large Data
-------------------------------
Here we benchmark loading a `large JSON file
<https://conda.anaconda.org/conda-forge/noarch/repodata.json>`__ (~77 MiB)
containing information on all the ``noarch`` packages in conda-forge_. We
compare the following libraries:
- msgspec_ (0.18.5)
- orjson_ (3.9.10)
- ujson_ (5.9.0)
- rapidjson_ (1.13)
- simdjson_ (5.0.2)
- json_ (standard library)
For each library, we measure both the peak increase in memory usage (RSS) and
the time to JSON decode the file.
The full benchmark source can be found `here
<https://github.com/jcrist/msgspec/tree/main/benchmarks/bench_large_json.py>`__.
**Results (smaller is better):**
+---------------------+--------------+------+-----------+------+
| | memory (MiB) | vs. | time (ms) | vs. |
+=====================+==============+======+===========+======+
| **msgspec structs** | 67.6 | 1.0x | 176.8 | 1.0x |
+---------------------+--------------+------+-----------+------+
| **msgspec** | 218.3 | 3.2x | 630.5 | 3.6x |
+---------------------+--------------+------+-----------+------+
| **json** | 295.0 | 4.4x | 868.6 | 4.9x |
+---------------------+--------------+------+-----------+------+
| **ujson** | 349.1 | 5.2x | 1087.0 | 6.1x |
+---------------------+--------------+------+-----------+------+
| **rapidjson** | 375.0 | 5.6x | 1004.0 | 5.7x |
+---------------------+--------------+------+-----------+------+
| **orjson** | 406.3 | 6.0x | 691.7 | 3.9x |
+---------------------+--------------+------+-----------+------+
| **simdjson** | 603.2 | 8.9x | 1053.0 | 6.0x |
+---------------------+--------------+------+-----------+------+
- ``msgspec`` decoding into :doc:`Struct <structs>` types uses the least amount of
memory, and is also the fastest to decode. This makes sense; ``Struct`` types
are cheaper to allocate and more memory efficient than ``dict`` types, and for
large messages these differences can really add up.
- ``msgspec`` decoding without a schema is the second best option for both
memory usage and speed. When decoding without a schema, ``msgspec`` makes the
assumption that the underlying message probably still has some structure;
short dict keys are temporarily cached to be reused later on, rather than
reallocated every time. This means that instead of allocating 10,000 copies
of the string ``"name"``, only a single copy is allocated and reused. For
large messages this can lead to significant memory savings. ``json`` and
``orjson`` also use similar optimizations, but not as effectively.
- ``orjson`` and ``simdjson`` use 6-9x more memory than ``msgspec`` in this
benchmark. In addition to the reasons above, both of these decoders require
copying the original message into a temporary buffer. In this case, the extra
copy adds an extra 77 MiB of overhead!
.. _struct-benchmark:
Structs
-------
Here we benchmark common `msgspec.Struct` operations, comparing their
performance against other similar libraries. The cases compared are:
- Standard Python classes
- dataclasses_
- msgspec_ (0.18.5)
- attrs_ (23.1.0)
- pydantic_ (2.5.2)
For each library, the following operations are benchmarked:
- Time to define a new class. Many libraries that abstract away class
boilerplate add overhead when defining classes, slowing import times for
libraries that make use of these classes.
- Time to create an instance of that class.
- Time to compare two instances for equality (``==``/``!=``).
- Time to compare two instances for order (``<``/``>``/``<=``/``>=``)
The full benchmark source can be found `here
<https://github.com/jcrist/msgspec/tree/main/benchmarks/bench_structs.py>`__.
**Results (smaller is better):**
+----------------------+-------------+-------------+---------------+------------+
| | import (μs) | create (μs) | equality (μs) | order (μs) |
+======================+=============+=============+===============+============+
| **msgspec** | 12.51 | 0.09 | 0.02 | 0.03 |
+----------------------+-------------+-------------+---------------+------------+
| **standard classes** | 7.88 | 0.35 | 0.08 | 0.16 |
+----------------------+-------------+-------------+---------------+------------+
| **attrs** | 483.10 | 0.37 | 0.14 | 1.87 |
+----------------------+-------------+-------------+---------------+------------+
| **dataclasses** | 506.09 | 0.36 | 0.14 | 0.16 |
+----------------------+-------------+-------------+---------------+------------+
| **pydantic** | 673.47 | 1.54 | 0.60 | N/A |
+----------------------+-------------+-------------+---------------+------------+
- Standard Python classes are the fastest to import (any library can only add
overhead here). Still, ``msgspec`` isn't *that* much slower, especially
compared to other options.
- Structs are optimized to be cheap to create, and that shows for the creation
benchmark. They're roughly 4x faster than standard
classes/``attrs``/``dataclasses``, and 17x faster than ``pydantic``.
- For equality comparison, msgspec Structs are roughly 4x to 30x faster than
the alternatives.
- For order comparison, msgspec Structs are roughly 5x to 60x faster than the
alternatives.
.. _struct-gc-benchmark:
Garbage Collection
------------------
`msgspec.Struct` instances implement several optimizations for reducing garbage
collection (GC) pressure and decreasing memory usage. Here we benchmark structs
(with and without :ref:`gc=False <struct-gc>`) against standard Python
classes (with and without `__slots__
<https://docs.python.org/3/reference/datamodel.html#slots>`__).
For each option we create a large dictionary containing many simple instances
of the benchmarked type, then measure:
- The amount of time it takes to do a full garbage collection (gc) pass
- The total amount of memory used by this data structure
The full benchmark source can be found `here
<https://github.com/jcrist/msgspec/tree/main/benchmarks/bench_gc.py>`__.
**Results (smaller is better):**
+-----------------------------------+--------------+-------------------+
| | GC time (ms) | Memory Used (MiB) |
+===================================+==============+===================+
| **standard class** | 80.46 | 211.66 |
+-----------------------------------+--------------+-------------------+
| **standard class with __slots__** | 80.06 | 120.11 |
+-----------------------------------+--------------+-------------------+
| **msgspec struct** | 13.96 | 120.11 |
+-----------------------------------+--------------+-------------------+
| **msgspec struct with gc=False** | 1.07 | 104.85 |
+-----------------------------------+--------------+-------------------+
- Standard Python classes are the most memory hungry (since all data is stored
in an instance dict). They also result in the largest GC pause, as the GC has
to traverse the entire outer dict, each class instance, and each instance
dict. All that pointer chasing has a cost.
- Standard classes with ``__slots__`` are less memory hungry, but still results
in an equivalent GC pauses.
- `msgspec.Struct` instances have the same memory layout as a class with
``__slots__`` (and thus have the same memory usage), but due to deferred GC
tracking a full GC pass completes in a fraction of the time.
- `msgspec.Struct` instances with ``gc=False`` have the lowest memory usage
(lack of GC reduces memory by 16 bytes per instance). They also have the
lowest GC pause (75x faster than standard classes!) since the entire
composing dict can be skipped during GC traversal.
.. _benchmark-library-size:
Library Size
------------
Here we compare the on-disk size of ``msgspec`` and ``pydantic``, its closest
equivalent.
The full benchmark source can be found `here
<https://github.com/jcrist/msgspec/tree/main/benchmarks/bench_library_size.py>`__.
**Results (smaller is better)**
+--------------+---------+------------+-------------+
| | version | size (MiB) | vs. msgspec |
+==============+=========+============+=============+
| **msgspec** | 0.18.4 | 0.46 | 1.00x |
+--------------+---------+------------+-------------+
| **pydantic** | 2.5.2 | 6.71 | 14.66x |
+--------------+---------+------------+-------------+
For applications where dependency size matters, ``msgspec`` is roughly 15x
smaller on disk.
.. raw:: html
<!-- needs package libjs-vega -->
<script src="file:///usr/share/javascript/vega/vega.min.js"></script>
<script src="file:///usr/share/doc/python-msgspec-doc/html/vega-lite.min.js"></script>
<script src="file:///usr/share/doc/python-msgspec-doc/html/vega-embed.min.js"></script>
.. raw:: html
<script type="text/javascript">
function buildPlot(div, rows, title) {
var i, time_unit, scale, max_time = 0;
for (i = 0; i < rows.length; i++) {
var total = rows[i].encode + rows[i].decode;
if (total > max_time) {
max_time = total;
}
}
if (max_time < 1e-6) {
time_unit = "ns";
scale = 1e9;
}
else if (max_time < 1e-3) {
time_unit = "μs";
scale = 1e6;
}
else {
time_unit = "ms";
scale = 1e3;
}
var columns = ["encode", "decode", "total"];
var data = [];
for (i = 0; i < rows.length; i++) {
var label = rows[i].label;
var et = rows[i].encode * scale;
var dt = rows[i].decode * scale;
var tt = et + dt;
data.push({library: label, method: "encode", time: et});
data.push({library: label, method: "decode", time: dt});
data.push({library: label, method: "total", time: tt});
}
var spec = {
"$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
"title": title,
"config": {
"view": {"stroke": null},
"legend": {"title": null, "labelFontSize": 12},
"title": {"fontSize": 14, "offset": 10},
"axis": {"titleFontSize": 12, "titlePadding": 10}
},
"width": "container",
"data": {"values": data},
"transform": [
{
"calculate": `join([format(datum.time, '.3'), ' ${time_unit}'], '')`,
"as": "tooltip",
}
],
"mark": "bar",
"encoding": {
"color": {
"field": "method",
"type": "nominal",
"scale": {"scheme": "tableau20"},
"sort": columns,
},
"row": {
"field": "library",
"header": {
"orient": "left",
"labelAngle": 0,
"labelAlign": "left",
"labelFontSize": 12
},
"sort": {"field": "time", "op": "sum", "order": "ascending"},
"title": null,
"type": "nominal",
},
"tooltip": {"field": "tooltip", "type": "nominal"},
"x": {
"axis": {"grid": false, "title": `Time (${time_unit})`},
"field": "time",
"type": "quantitative",
},
"y": {
"axis": {"labels": false, "ticks": false, "title": null},
"field": "method",
"type": "nominal",
"sort": columns,
},
},
};
vegaEmbed(div, spec);
}
function buildMemPlot(div, rows, title) {
var data = [];
for (i = 0; i < rows.length; i++) {
data.push({library: rows[i].label, memory: rows[i].memory});
}
var spec = {
"$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
"title": title,
"config": {
"view": {"stroke": null},
"legend": {"title": null, "labelFontSize": 12},
"title": {"fontSize": 14, "offset": 10},
"axis": {"titleFontSize": 12, "titlePadding": 10}
},
"width": "container",
"data": {"values": data},
"transform": [
{
"calculate": "join([format(datum.memory, '.3'), ' MiB'], '')",
"as": "tooltip",
}
],
"mark": "bar",
"encoding": {
"row": {
"field": "library",
"header": {
"orient": "left",
"labelAngle": 0,
"labelAlign": "left",
"labelFontSize": 12
},
"sort": {"field": "memory", "order": "ascending"},
"title": null,
"type": "nominal",
},
"tooltip": {"field": "tooltip", "type": "nominal"},
"x": {
"axis": {"grid": false, "title": "Memory (MiB)"},
"field": "memory",
"type": "quantitative",
},
},
};
vegaEmbed(div, spec);
}
var results_valid = [
{"label": "msgspec", "encode": 0.00016727479400015, "decode": 0.0004222057979986857, "memory": 0.640625},
{"label": "mashumaro", "encode": 0.000797896412001137, "decode": 0.0026786830099990765, "memory": 7.1171875},
{"label": "cattrs", "encode": 0.002065396289999626, "decode": 0.0033923348699954657, "memory": 3.25390625},
{"label": "pydantic v2", "encode": 0.0034702956599994648, "decode": 0.0038069566000012854, "memory": 16.26171875},
{"label": "pydantic v1", "encode": 0.01961492505001843, "decode": 0.02528851079996457, "memory": 10.03125},
];
var results_json = [
{"label": "msgspec structs", "encode": 0.00014051752349996606, "decode": 0.00036725287499939443},
{"label": "msgspec", "encode": 0.00018274705249996258, "decode": 0.00048175174399875685},
{"label": "json", "encode": 0.0012280583099982323, "decode": 0.0009195450700008223},
{"label": "orjson", "encode": 0.00017935967999983403, "decode": 0.0004634268540012272},
{"label": "ujson", "encode": 0.0006279176680000091, "decode": 0.0008554406740004197},
{"label": "rapidjson", "encode": 0.000513588076000815, "decode": 0.0011320363100003306},
{"label": "simdjson", "encode": 0.00123421613499886, "decode": 0.0007710835699999734},
];
var results_msgpack = [
{"label": "msgspec structs", "encode": 0.00011157811949942698, "decode": 0.000347989668000082},
{"label": "msgspec", "encode": 0.00012483930500002316, "decode": 0.000487175850001222},
{"label": "msgpack", "encode": 0.00040346372400017574, "decode": 0.0007988804240012541},
{"label": "ormsgpack", "encode": 0.00016052370499983226, "decode": 0.0007458347079991654}
];
buildPlot('#bench-validate', results_valid, "Benchmark - JSON Serialization & Validation");
buildMemPlot('#bench-validate-memory', results_valid, "Benchmark - Serialization & Validation");
buildPlot('#bench-json', results_json, "Benchmark - JSON Serialization");
buildPlot('#bench-msgpack', results_msgpack, "Benchmark - MessagePack Serialization");
</script>
.. _msgspec: https://jcristharif.com/msgspec/
.. _msgpack: https://github.com/msgpack/msgpack-python
.. _ormsgpack: https://github.com/aviramha/ormsgpack
.. _MessagePack: https://msgpack.org
.. _orjson: https://github.com/ijl/orjson
.. _json: https://docs.python.org/3/library/json.html
.. _simdjson: https://github.com/TkTech/pysimdjson
.. _ujson: https://github.com/ultrajson/ultrajson
.. _rapidjson: https://github.com/python-rapidjson/python-rapidjson
.. _attrs: https://www.attrs.org
.. _dataclasses: https://docs.python.org/3/library/dataclasses.html
.. _pydantic: https://pydantic-docs.helpmanual.io/
.. _cattrs: https://catt.rs/en/latest/
.. _mashumaro: https://github.com/Fatal1ty/mashumaro
.. _conda-forge: https://conda-forge.org/
|