1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
Structs
=======
Structs are the preferred way of defining structured data types in ``msgspec``.
They're written in C and are quite speedy and lightweight (:doc:`measurably
faster <benchmarks>` to create/compare/encode/decode than similar options like
dataclasses_, attrs_, or pydantic_). They're great for representing structured
data both for serialization and for use in an application.
Structs are defined by subclassing from `msgspec.Struct` and annotating the
types of individual fields. Default values can also be provided for any
optional arguments. Here we define a struct representing a user, with one
required field and two optional fields.
.. code-block:: python
>>> import msgspec
>>> from typing import Set, Optional
>>> class User(msgspec.Struct):
... """A struct describing a user"""
... name : str
... email : Optional[str] = None
... groups : Set[str] = set()
- ``name`` is a *required* field expecting a `str`
- ``email`` is an *optional* field expecting a `str` or `None`, defaulting to
`None` if no value is provided.
- ``groups`` is an *optional* field expecting a `set` of `str`. If no value is
provided, it defaults to the empty set.
Struct types automatically generate a few methods based on the provided type
annotations:
- ``__init__``
- ``__repr__``
- ``__copy__``
- ``__replace__``
- ``__eq__`` & ``__ne__``
- ``__match_args__`` (for Python 3.10+'s `pattern matching`_)
- ``__rich_repr__`` (for pretty printing support with rich_)
.. code-block:: python
>>> alice = User("alice", groups={"admin", "engineering"})
>>> alice
User(name='alice', email=None, groups={'admin', 'engineering'})
>>> bob = User("bob", email="bob@company.com")
>>> bob
User(name='bob', email='bob@company.com', groups=set())
>>> alice.name
"alice"
>>> bob.groups
set()
>>> alice == bob
False
>>> alice == User("alice", groups={"admin", "engineering"})
True
Note that it is forbidden to override ``__init__``/``__new__`` in a struct
definition, but other methods can be overridden or added as needed. If you need
to customize the generated ``__init__``, see :ref:`struct-post-init`.
The struct fields are available via the ``__struct_fields__`` attribute (a
tuple of the fields in argument order ) if you need them. Here we add a method
for converting a struct to a dict.
.. code-block:: python
>>> class Point(msgspec.Struct):
... """A point in 2D space"""
... x : float
... y : float
...
... def to_dict(self):
... return {f: getattr(self, f) for f in self.__struct_fields__}
...
>>> p = Point(1.0, 2.0)
>>> p.to_dict()
{"x": 1.0, "y": 2.0}
Default Values
--------------
Struct fields may be given default values, which are used if no value is
provided to ``__init__``, or when decoding a message. Default values are
configured as part of a Struct definition by assigning them after a field's
type annotation.
.. code-block:: python
>>> from msgspec import Struct, field
>>> import uuid
>>> class Example(Struct):
... a: int = 1
... b: uuid.UUID = field(default_factory=uuid.uuid4)
... c: list[int] = []
>>> Example()
Example(a=1, b=UUID('f63219d5-e9ca-4ae8-afd0-cba30e84222d'), c=[])
>>> Example(a=2)
Example(a=2, b=UUID('319a6c0f-2841-4439-8bc8-2c1daf7d77a2'), c=[])
>>> Example().c is Example().c # new list instance used each time
False
Default values may be one of 3 kinds:
- A "static" default value. Here the same default value is used for all
instances. These are specified by assigning the default value itself as part
of the field definition (as in ``a`` above). Most default values will be of
this variety.
- A "dynamic" default value. Here a new default value is used for every
instance. These are specified by passing a 0-argument callable to the
``default_factory`` argument of `msgspec.field` (as in ``b`` above). This
function will be called as needed to create a new default value per instance.
These are mainly useful for occasions where you need dynamic defaults, or
when a default value is a mutable object that you don't want to share between
all instances of the struct (a `common gotcha
<https://docs.python-guide.org/writing/gotchas/#mutable-default-arguments>`_
in Python). Note that since the ``default_factory`` callables take no
arguments, you might need to make use of a lambda_ or `functools.partial` to
forward any additional parameters needed to the default factory.
- Builtin *empty* mutable collections (``[]``, ``{}``, ``set()``, and
``bytearray()``) may be used as default values (as in ``c`` above). Since
defaults of these types are so common, these are "syntactic sugar" for
specifying the corresponding ``default_factory`` (to avoid accidental sharing
of mutable values). A default of ``[]`` is identical to a default of
``field(default_factory=list)``, with a new list instance used each time.
Specifying a non-empty mutable collection (e.g. ``[1, 2, 3]``) as a default
value will cause the struct definition to error (you should manually define a
``default_factory`` in this case).
.. _struct-post-init:
Post-Init Processing
--------------------
If a struct type defines a ``__post_init__(self)`` method, this will be called
at the end of the generated ``__init__`` method. It has the same semantics as the
``dataclasses`` method `of the same name
<https://docs.python.org/3/library/dataclasses.html#post-init-processing>`__.
This method may be useful for adding additional logic to the init (such as
custom validation).
In addition to in ``__init__``, the ``__post_init__`` hook is also called when:
- Decoding into a struct type (e.g. ``msgspec.json.decode(..., type=MyStruct)``)
- Converting into a struct type (e.g. ``msgspec.convert(..., type=MyStruct)``)
In these cases any `TypeError` or `ValueError` exceptions raised by this method
will be considered "user facing" and converted into a `msgspec.ValidationError`
with additional context. All other exceptions will be raised directly.
.. code-block:: python
>>> import msgspec
>>> class Interval(msgspec.Struct):
... low: float
... high: float
...
... def __post_init__(self):
... if self.low > self.high:
... raise ValueError("`low` may not be greater than `high`")
>>> Interval(1, 2) # valid interval
Interval(low=1, high=2)
>>> Interval(2, 1) # invalid interval
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 6, in __post_init__
ValueError: `low` may not be greater than `high`
>>> msgspec.json.decode(b'{"low": 2, "high": 1}', type=Interval) # invalid interval from JSON
Traceback (most recent call last):
File "<stdin>", line 6, in __post_init__
ValueError: `low` may not be greater than `high`
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: `low` may not be greater than `high`
.. _struct-field-ordering:
Field Ordering
--------------
When defining a new struct type, fields are stored in the order they're defined
(keyword-only fields excluded, more on this later). This is nice for
readability since the generated ``__init__`` matches the field order.
.. code-block:: python
class Example(msgspec.Struct):
a: str
b: int = 0
The generated ``__init__()`` for ``User`` looks like:
.. code-block:: python
def __init__(self, a: str, b: int = 0):
One consequence of this is that you can't put fields without defaults after
fields with defaults, since the Python VM doesn't allow keyword arguments
before positional arguments. The following struct definition will error:
.. code-block:: python
>>> class Invalid(msgspec.Struct):
... a: str = ""
... b: int # oop, no default!
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Required field 'b' cannot follow optional fields. Either reorder
the struct fields, or set `kw_only=True` in the struct definition.
Thankfully the error message includes some solutions:
- Reorder the struct fields, putting all required fields before all optional
fields.
- Set ``kw_only=True`` in the struct definition. This option makes all fields
defined on the struct `keyword-only parameters`_.
Keyword-only parameters have no such restriction; required and optional
parameters can be mixed in any order.
.. code-block:: python
>>> class Example(msgspec.Struct, kw_only=True):
... a: str = ""
... b: int # this is fine with kw_only=True
>>> Example(a="example", b=123)
Example(a='example', b=123)
Note that the ``kw_only`` setting only affects fields defined on that class,
*not* those defined on base or subclasses. This means you can define
keyword-only parameters on a base class then add positional parameters in a
subclass. All keyword-only parameters are reordered to go after all positional
fields.
.. code-block:: python
>>> class Base(msgspec.Struct, kw_only=True):
... a: str = ""
... b: int
>>> class Subclass(Base):
... c: float
... d: bytes = b""
The generated ``__init__()`` for ``Subclass`` looks like:
.. code-block:: python
def __init__(self, c: float, d: bytes = b"", * a: str, b: int = 0):
The field ordering rules for ``Struct`` types are identical to those for
`dataclasses`, see the `dataclasses docs <dataclasses>`_ for more information.
Class Variables
---------------
Like `dataclasses`, `msgspec.Struct` types will exclude any attribute
annotations wrapped in `typing.ClassVar` from their fields.
.. code-block:: python
>>> import msgspec
>>> from typing import ClassVar
>>> class Example(msgspec.Struct):
... x: int
... a_class_variable: ClassVar[int] = 2
>>> Example.a_class_variable
2
>>> Example(1) # only `x` is counted as a field
Example(x=1)
Note that if using `PEP 563`_ "postponed evaluation of annotations" (e.g.
``from __future__ import annotations``) only the following spellings will work:
- ``ClassVar`` or ``ClassVar[<type>]``
- ``typing.ClassVar`` or ``typing.ClassVar[<type>]``
Importing ``ClassVar`` or ``typing`` under an aliased name (e.g. ``import
typing as typ`` or ``from typing import ClassVar as CV``) will not be properly
detected.
Type Validation
---------------
Unlike some other libraries (e.g. pydantic_), the type annotations on a
`msgspec.Struct` class are not checked at runtime during normal use. Types are
only checked when *decoding* a serialized message when using a `typed decoder
<typed-deserialization>`.
.. code-block:: python
>>> import msgspec
>>> class Point(msgspec.Struct):
... x: float
... y: float
>>> # Improper types in *your* code aren't checked at runtime
... Point(x=1, y="oops")
Point(x=1, y='oops')
>>> # Improper types when decoding *are* checked at runtime
... msgspec.json.decode(b'{"x": 1.0, "y": "oops"}', type=Point)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `float`, got `str` - at `$.y`
This is intentional. Static type checkers like mypy_/pyright_ work well with
``msgspec``, and can be used to catch bugs without ever running your code. When
possible, static tools or unit tests should be preferred over adding expensive
runtime checks which slow down every ``__init__`` call.
The input(s) to your programs however cannot be checked statically, as they
aren't known until runtime. As such, ``msgspec`` does perform type validation
when decoding messages (provided an expected decode type is provided). This
validation is fast enough that it is *negligible in cost* - there is no added
performance benefit when not using it. In fact, in most cases it's faster to
decode a message into a type validated `msgspec.Struct` than into an untyped
`dict`.
Pattern Matching
----------------
If using Python 3.10+, `msgspec.Struct` types can be used in `pattern matching`_
blocks. Replicating an example from `PEP 636`_:
.. code-block:: python
# NOTE: this example requires Python 3.10+
>>> import msgspec
>>> class Point(msgspec.Struct):
... x: float
... y: float
>>> def where_is(point):
... match point:
... case Point(0, 0):
... print("Origin")
... case Point(0, y):
... print(f"Y={y}")
... case Point(x, 0):
... print(f"X={x}")
... case Point():
... print("Somewhere else")
... case _:
... print("Not a point")
>>> where_is(Point(0, 6))
"Y=6"
Equality and Order
------------------
By default struct types define an ``__eq__`` method based on the type
definition. This enables support for equality comparisons. Additionally, you
may configure ``order=True`` to make a struct type *orderable* through
generation of ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods. These
methods compare and order instances of a struct type the same as if they were
tuples of their field values (in definition order).
.. code-block:: python
>>> class Point(msgspec.Struct, order=True):
... x: float
... y: float
>>> Point(1, 2) == Point(1, 2)
True
>>> Point(1, 2) < Point(3, 4)
True
In *rare* instances you may opt to disable generation of the ``__eq__`` method
by configuring ``eq=False``. Equality checks will then fall back to *identity
comparisons*, where the only value a struct instance of that type will compare
equal to is itself.
.. code-block:: python
>>> class Point(msgspec.Struct, eq=False):
... x: float
... y: float
>>> p = Point(1, 2)
>>> p == Point(1, 2)
False
>>> p == p # identity comparison only
True
Frozen Instances
----------------
A struct type can optionally be marked as "frozen" by specifying
``frozen=True``. This disables modifying attributes after initialization, and
adds a ``__hash__`` method to the class definition. Note that for the
``__hash__`` to work, all fields on the struct must also be hashable.
.. code-block:: python
>>> class Point(msgspec.Struct, frozen=True):
... """This struct is immutable & hashable"""
... x: float
... y: float
...
>>> p = Point(1.0, 2.0)
>>> {p: 1} # frozen structs are hashable, and can be keys in dicts
{Point(1.0, 2.0): 1}
>>> p.x = 2.0 # frozen structs cannot be modified after creation
Traceback (most recent call last):
...
AttributeError: immutable type: 'Point'
.. _struct-tagged-unions:
Tagged Unions
-------------
By default a serialized struct only contains information on the *values*
present in the struct instance - no information is serialized noting which
struct type corresponds to the message. Instead, the user is expected to
know the type the message corresponds to, and pass that information
appropriately to the decoder.
.. code-block:: python
>>> import msgspec
>>> class Get(msgspec.Struct):
... key: str
>>> msg = msgspec.json.encode(Get("my key"))
>>> msg # No type information present in the message
b'{"key":"my key"}'
>>> msgspec.json.decode(msg, type=Get)
Get(key='my key')
In most cases this works well - schemas are often simple and each value may
only correspond to at most one Struct type. However, sometimes you may have a
message (or a field in a message) that may contain one of a number of different
structured types. In this case we need some way to determine the type of the
message from the message itself!
``msgspec`` handles this through the use of `Tagged Unions`_. A new field (the
"tag field") is added to the serialized representation of all struct types in
the union. Each struct type associates a different value (the "tag") with this
field. When the decoder encounters a tagged union it decodes the tag first and
uses it to determine the type to use when decoding the rest of the object. This
process is efficient and makes determining the type of a serialized message
unambiguous.
The quickest way to enable tagged unions is to set ``tag=True`` when defining
every struct type in the union. In this case ``tag_field`` defaults to
``"type"``, and ``tag`` defaults to the struct class name (e.g. ``"Get"``).
.. code-block:: python
>>> import msgspec
>>> from typing import Union
>>> # Pass in ``tag=True`` to tag the structs using the default configuration
... class Get(msgspec.Struct, tag=True):
... key: str
>>> class Put(msgspec.Struct, tag=True):
... key: str
... val: str
>>> msg = msgspec.json.encode(Get("my key"))
>>> msg # "type" is the tag field, "Get" is the tag
b'{"type":"Get","key":"my key"}'
>>> # Create a decoder for decoding either Get or Put
... dec = msgspec.json.Decoder(Union[Get, Put])
>>> # The tag value is used to determine the message type
... dec.decode(b'{"type": "Put", "key": "my key", "val": "my val"}')
Put(key='my key', val='my val')
>>> dec.decode(b'{"type": "Get", "key": "my key"}')
Get(key='my key')
>>> # A tagged union can also contain non-struct types.
... msgspec.json.decode(
... b'123',
... type=Union[Get, Put, int]
... )
123
If you want to change this behavior to use a different tag field and/or value,
you can further configure things through the ``tag_field`` and ``tag`` kwargs.
A struct's tagging configuration is determined as follows.
- If ``tag`` and ``tag_field`` are ``None`` (the default), or ``tag=False``,
then the struct is considered "untagged". The struct is serialized with only
its standard fields, and cannot participate in ``Union`` types with other
structs.
- If either ``tag`` or ``tag_field`` are non-None, then the struct is
considered "tagged". The struct is serialized with an additional field (the
``tag_field``) mapping to its corresponding ``tag`` value. It can participate
in ``Union`` types with other structs, provided they all share the same
``tag_field`` and have unique ``tag`` values.
- If a struct is tagged, ``tag_field`` defaults to ``"type"`` if not provided
or inherited. This can be overridden by passing a tag field explicitly (e.g.
``tag_field="kind"``). Note that ``tag_field`` must not conflict with any
other field names in the struct, and must be the same for all struct types in
a union.
- If a struct is tagged, ``tag`` defaults to the class name (e.g. ``"Get"``) if
not provided or inherited. This can be overridden by passing a string (or
less commonly an integer) value explicitly (e.g. ``tag="get"``). ``tag`` can
also be passed a callable that takes the class qualname and returns a valid tag
value (e.g. ``tag=str.lower``). Note that tag values must be unique for all
struct types in a union, and ``str`` and ``int`` tag types cannot both be
used within the same union.
If you like subclassing, both ``tag_field`` and ``tag`` are inheritable by
subclasses, allowing configuration to be set once on a base class and reused
for all struct types you wish to tag.
.. code-block:: python
>>> import msgspec
>>> from typing import Union
>>> # Create a base class for tagged structs, where:
... # - the tag field is "op"
... # - the tag is the class name lowercased
... class TaggedBase(msgspec.Struct, tag_field="op", tag=str.lower):
... pass
>>> # Use the base class to pass on the configuration
... class Get(TaggedBase):
... key: str
>>> class Put(TaggedBase):
... key: str
... val: str
>>> msg = msgspec.json.encode(Get("my key"))
>>> msg # "op" is the tag field, "get" is the tag
b'{"op":"get","key":"my key"}'
>>> # Create a decoder for decoding either Get or Put
... dec = msgspec.json.Decoder(Union[Get, Put])
>>> # The tag value is used to determine the message type
... dec.decode(b'{"op": "put", "key": "my key", "val": "my val"}')
Put(key='my key', val='my val')
>>> dec.decode(b'{"op": "get", "key": "my key"}')
Get(key='my key')
.. _omit_defaults:
Omitting Default Values
-----------------------
By default, ``msgspec`` encodes all fields in a Struct type, including optional
fields (those configured with a default value).
.. code-block:: python
>>> import msgspec
>>> class User(msgspec.Struct):
... name : str
... email : Optional[str] = None
... groups : Set[str] = set()
>>> alice = User("alice")
>>> alice # email & groups are using the default values
User(name='alice', email=None, groups=set())
>>> msgspec.json.encode(alice) # default values are present in encoded message
b'{"name":"alice","email":null,"groups":[]}'
If the default values are known on the decoding end (making serializing them
redundant), it may be beneficial and desired to omit default values from the
encoded message. This can be done by configuring ``omit_defaults=True`` as part
of the Struct definition:
.. code-block:: python
>>> import msgspec
>>> class User(msgspec.Struct, omit_defaults=True):
... name : str
... email : Optional[str] = None
... groups : Set[str] = set()
>>> alice = User("alice")
>>> msgspec.json.encode(alice) # default values are omitted
b'{"name":"alice"}'
>>> bob = User("bob", email="bob@company.com")
>>> msgspec.json.encode(bob)
b'{"name":"bob","email":"bob@company.com"}'
Omitting defaults reduces the size of the encoded message, and often also
improves encoding and decoding performance (since there's less work to do).
Note that detection of default values is optimized for performance; in certain
situations a default value may still be encoded. For the curious, the current
detection logic is as follows:
.. code-block:: python
>>> def matches_default(value: Any, default: Any) -> bool:
... """Whether a value matches the default for a field"""
... if value is default:
... return True
... if type(value) != type(default):
... return False
... if type(value) in (list, set, dict) and (len(value) == len(default) == 0):
... return True
... return False
.. _forbid-unknown-fields:
Forbidding Unknown Fields
-------------------------
By default ``msgspec`` will skip unknown fields encountered when decoding into
``Struct`` types. This is normally desired, as it allows for
:doc:`schema-evolution` and more flexible decoding.
One downside is that typos may go unnoticed when decoding ``Struct`` types with
optional fields. For example:
.. code-block:: python
>>> class Example(msgspec.Struct):
... field_one: int
... field_two: bool = False
>>> msgspec.json.decode(
... b'{"field_one": 1, "field_twoo": true}', # oops, a typo
... type=Example
... )
Example(field_one=1, field_two=False)
In this example, the misspelled ``"field_twoo"`` is ignored since no field with
that name exists. Since ``field_two`` has a default value, the default is used
and no error is raised for a missing field.
To prevent typos like this, you can configure ``forbid_unknown_fields=True`` as
part of the struct definition. If this option is enabled, any unknown fields
encountered will result in an error.
.. code-block:: python
>>> class Example(msgspec.Struct, forbid_unknown_fields=True):
... field_one: int
... field_two: bool = False
>>> msgspec.json.decode(
... b'{"field_one": 1, "field_twoo": true}', # oops, a typo
... type=Example
... )
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Object contains unknown field `field_twoo`
Renaming Fields
---------------
Sometimes you want the field name used in the encoded message to differ from
the name used by your Python code. Perhaps you want a ``camelCase`` naming
convention in your JSON messages, but to use ``snake_case`` field names in
Python.
``msgspec`` supports two places for configuring a field's name used for
encoding/decoding:
**On the field definition**
If you're only renaming a few fields, you might find configuring the new names
as part of the field definition to be the simplest option. To do this you can
use the ``name`` argument in `msgspec.field`. Any fields declared with this
option will use the new name for encoding/decoding.
.. code-block:: python
>>> import msgspec
>>> class Example(msgspec.Struct):
... x: int
... y: int
... z: int = msgspec.field(name="field_z") # renamed to "field_z"
>>> # Python code uses the original field names
... ex = Example(x=1, y=2, z=3)
>>> # Encoded messages use the renamed field names
... msgspec.json.encode(ex)
b'{"x":1,"y":2,"field_z":3}'
>>> # Decoding also uses the renamed field names
... msgspec.json.decode(b'{"x": 1, "y": 2, "field_z": 3}', type=Example)
Example(x=1, y=2, z=3)
**On the struct definition**
If you're renaming lots of fields (especially if you're renaming them with a
naming convention like ``camelCase``), you may wish to make use of the
``rename`` configuration option in the `Struct` definition instead. This can
take a few different values:
- ``None``: the default, no field renaming (``example_field``)
- ``"lower"``: lowercase all fields (``example_field``)
- ``"upper"``: uppercase all fields (``EXAMPLE_FIELD``)
- ``"camel"``: camelCase all fields (``exampleField``)
- ``"pascal"``: PascalCase all fields (``ExampleField``)
- A mapping from field names to the renamed names. Field names missing from the
mapping will not be renamed.
- A callable (signature ``rename(name: str) -> Optional[str]``) to use to
rename all field names. Note that ``None`` for a return value indicates the
original field name should be used.
The renamed field names are used for encoding and decoding only, any python
code will still refer to them using their original names.
.. code-block:: python
>>> import msgspec
>>> class Example(msgspec.Struct, rename="camel"):
... """A struct with fields renamed using camelCase"""
... field_one: int
... field_two: str
>>> # Python code uses the original field names
... ex = Example(1, field_two="two")
>>> # Encoded messages use the renamed field names
... msgspec.json.encode(ex)
b'{"fieldOne":1,"fieldTwo":"two"}'
>>> # Decoding uses the renamed field names
... msgspec.json.decode(b'{"fieldOne": 3, "fieldTwo": "four"}', type=Example)
Example(field_one=3, field_two='four')
>>> # Decoding errors also use the renamed field names
... msgspec.json.decode(b'{"fieldOne": 5}', type=Example)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Object missing required field `fieldTwo`
If renaming to camelCase, you may run into issues if your field names contain
acronyms (e.g. ``FQDN`` in ``setHostnameAsFQDN``). Some JSON style guides
prefer to fully-uppercase these components (``FQDN``), but ``msgspec`` has no
way to know if a component is an acroynm or not (and so will result in
``Fqdn``). As such, we recommend using an explicit dict mapping for renaming if
generating `Struct` types to match an existing API.
.. code-block:: python
# https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#podspec-v1-core
# An explicit mapping from python name -> JSON field name
v1podspec_names = {
...
"service_account_name": "serviceAccountName",
"set_hostname_as_fqdn": "setHostnameAsFQDN",
...
}
# Pass the mapping to `rename` to explicitly rename all fields
class V1PodSpec(msgspec.Struct, rename=v1podspec_names):
...
service_account_name: str = ""
set_hostname_as_fqdn: bool = False
...
Note that if both the ``rename`` configuration option and the ``name`` arg to
`msgspec.field` are used, names set explicitly via `msgspec.field` take
precedence.
.. code-block:: python
>>> import msgspec
>>> class Example(msgspec.Struct, rename="camel"):
... field_x: int
... field_y: int = msgspec.field(name="y") # set explicitly
>>> msgspec.json.encode(Example(1, 2))
b'{"fieldX":1,"y":2}'
Encoding/Decoding as Arrays
---------------------------
By default Struct objects encode the same dicts, with both the keys and values
present in the message.
.. code-block:: python
>>> import msgspec
>>> class Point(msgspec.Struct):
... x: int
... y: int
>>> msgspec.json.encode(Point(1, 2))
b'{"x":1,"y":2}'
If you need higher performance (at the cost of more inscrutable message
encoding), you can set ``array_like=True`` on a struct definition. Structs with
this option enabled are encoded/decoded as array-like types, removing the field
names from the encoded message. This can provide on average another ~2x speedup
for decoding (and ~1.5x speedup for encoding).
.. code-block:: python
>>> class Point2(msgspec.Struct, array_like=True):
... x: int
... y: int
>>> msgspec.json.encode(Point2(1, 2))
b'[1,2]'
>>> msgspec.json.decode(b'[3,4]', type=Point2)
Point2(x=3, y=4)
Note that :ref:`struct-tagged-unions` also work with structs with
``array_like=True``. In this case the tag is encoded as the first item in the
array, and is used to determine which type in the union to use when decoding.
.. code-block:: python
>>> import msgspec
>>> from typing import Union
>>> class Get(msgspec.Struct, tag=True, array_like=True):
... key: str
>>> class Put(msgspec.Struct, tag=True, array_like=True):
... key: str
... val: str
>>> msgspec.json.encode(Get("my key"))
b'["Get","my key"]'
>>> msgspec.json.decode(
... b'["Put", "my key", "my val"]',
... type=Union[Get, Put]
... )
Put(key='my key', val='my val')
Runtime Definition
------------------
In some cases it can be useful to dynamically generate `msgspec.Struct` classes
at runtime. This can be handled through the use of `msgspec.defstruct`, which
has a signature similar to `dataclasses.make_dataclass`. See
`msgspec.defstruct` for more information.
.. code-block:: python
>>> import msgspec
>>> Point = msgspec.defstruct("Point", [("x", float), ("y", float)])
>>> p = Point(1.0, 2.0)
>>> p
Point(x=1.0, y=2.0)
.. _struct-gc:
Disabling Garbage Collection (Advanced)
---------------------------------------
.. warning::
This is an advanced optimization, and only recommended for users who fully
understand the implications of disabling the GC.
Python uses `reference counting`_ to detect when memory can be freed, with a
periodic `cyclic garbage collector`_ pass to detect and free cyclic references.
Garbage collection (GC) is triggered by the number of uncollected GC-enabled
(objects that contain other objects) objects passing a certain threshold. This
design means that garbage collection passes often run during code that creates
a lot of objects (for example, deserializing a large message).
By default, `msgspec.Struct` types will only be tracked if they contain a
reference to a tracked object themselves. This means that structs referencing
only scalar values (ints, strings, bools, ...) won't contribute to GC load, but
structs referencing containers (lists, dicts, structs, ...) will.
.. code-block:: python
>>> import msgspec
>>> from typing import Any
>>> import gc
>>> class Example(msgspec.Struct):
... x: Any
... y: Any
>>> ex1 = Example(1, "two")
>>> # ex1 is untracked, since it only references untracked objects
... gc.is_tracked(ex1)
False
>>> ex2 = Example([1, 2, 3], (4, 5, 6))
>>> # ex2 is tracked, since it references tracked objects
... gc.is_tracked(ex2)
True
If you *are certain* that your struct types can *never* participate in a
reference cycle, you *may* find a :ref:`performance boost
<struct-gc-benchmark>` from setting ``gc=False`` on a struct definition. This
boost is tricky to measure in isolation, since it should only result in the
garbage collector not running as frequently - an integration benchmark is
recommended to determine if this is worthwhile for your workload. A workload is
likely to benefit from this optimization in the following situations:
- You're allocating a lot of struct objects at once (for example, decoding a
large object). Setting ``gc=False`` on these types will reduce the
likelihood of a GC pass occurring while decoding, improving application
latency.
- You have a large number of long-lived struct objects. Setting ``gc=False``
on these types will reduce the load on the GC during collection cycles of
later generations.
Struct types with ``gc=False`` will never be tracked, even if they reference
container types. It is your responsibility to ensure cycles with these objects
don't occur, as a cycle containing only ``gc=False`` structs will *never* be
collected (leading to a memory leak).
.. _type annotations: https://docs.python.org/3/library/typing.html
.. _pattern matching: https://docs.python.org/3/reference/compound_stmts.html#the-match-statement
.. _PEP 636: https://peps.python.org/pep-0636/
.. _PEP 563: https://peps.python.org/pep-0563/
.. _dataclasses: https://docs.python.org/3/library/dataclasses.html
.. _attrs: https://www.attrs.org/en/stable/index.html
.. _pydantic: https://pydantic-docs.helpmanual.io/
.. _mypy: https://mypy.readthedocs.io/en/stable/
.. _pyright: https://github.com/microsoft/pyright
.. _reference counting: https://en.wikipedia.org/wiki/Reference_counting
.. _cyclic garbage collector: https://devguide.python.org/garbage_collector/
.. _tagged unions: https://en.wikipedia.org/wiki/Tagged_union
.. _rich: https://rich.readthedocs.io/en/stable/pretty.html
.. _keyword-only parameters: https://docs.python.org/3/glossary.html#term-parameter
.. _lambda: https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
|