1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
|
Supported Types
===============
``msgspec`` uses Python `type annotations`_ to describe the expected types.
Most combinations of the following types are supported (with a few restrictions):
**Builtin Types**
- `None`
- `bool`
- `int`
- `float`
- `str`
- `bytes`
- `bytearray`
- `tuple` / `typing.Tuple`
- `list` / `typing.List`
- `dict` / `typing.Dict`
- `set` / `typing.Set`
- `frozenset` / `typing.FrozenSet`
**Msgspec types**
- `msgspec.msgpack.Ext`
- `msgspec.Raw`
- `msgspec.UNSET`
- `msgspec.Struct` types
**Standard Library Types**
- `datetime.datetime`
- `datetime.date`
- `datetime.time`
- `datetime.timedelta`
- `uuid.UUID`
- `decimal.Decimal`
- `enum.Enum` types
- `enum.IntEnum` types
- `enum.StrEnum` types
- `enum.Flag` types
- `enum.IntFlag` types
- `dataclasses.dataclass` types
**Typing module types**
- `typing.Any`
- `typing.Optional`
- `typing.Union`
- `typing.Literal`
- `typing.NewType`
- `typing.Final`
- `typing.TypeAliasType`
- `typing.TypeAlias`
- `typing.NamedTuple` / `collections.namedtuple`
- `typing.TypedDict`
- `typing.Generic`
- `typing.TypeVar`
**Abstract types**
- `collections.abc.Collection` / `typing.Collection`
- `collections.abc.Sequence` / `typing.Sequence`
- `collections.abc.MutableSequence` / `typing.MutableSequence`
- `collections.abc.Set` / `typing.AbstractSet`
- `collections.abc.MutableSet` / `typing.MutableSet`
- `collections.abc.Mapping` / `typing.Mapping`
- `collections.abc.MutableMapping` / `typing.MutableMapping`
**Third-Party Libraries**
- attrs_ types
Additional types may be supported through :doc:`extensions <extending>`.
Note that except where explicitly stated, subclasses of these types are not
supported by default (see :doc:`extending` for how to add support yourself).
Here we document how msgspec maps Python objects to/from the various supported
protocols.
``None``
--------
`None` maps to the ``null`` value in all supported protocols. Note that TOML_
lacks a ``null`` value, attempted to encode a message containing ``None`` to
``TOML`` will result in an error.
.. code-block:: python
>>> msgspec.json.encode(None)
b'null'
>>> msgspec.json.decode(b'null')
None
If ``strict=False`` is specified, a string value of ``"null"`` (case
insensitive) may also be coerced to ``None``. See :ref:`strict-vs-lax` for more
information.
.. code-block:: python
>>> msgspec.json.decode(b'"null"', type=None, strict=False)
None
``bool``
--------
Booleans map to their corresponding ``true``/``false`` values in both all
supported protocols.
.. code-block:: python
>>> msgspec.json.encode(True)
b'true'
>>> msgspec.json.decode(b'true')
True
If ``strict=False`` is specified, values of ``"true"``/``"1"``/``1`` or
``"false"``/``"0"``/``0`` (case insensitive for strings) may also be coerced to
``True``/``False`` respectively. See :ref:`strict-vs-lax` for more information.
.. code-block:: python
>>> msgspec.json.decode(b'"false"', type=bool, strict=False)
False
>>> msgspec.json.decode(b'"TRUE"', type=bool, strict=False)
True
>>> msgspec.json.decode(b'1', type=bool, strict=False)
True
``int``
-------
Integers map to integers in all supported protocols.
Support for large integers varies by protocol:
- ``msgpack`` only supports encoding/decoding integers within
``[-2**63, 2**64 - 1]``, inclusive.
- ``json``, ``yaml``, and ``toml`` have no restrictions on encode or decode.
.. code-block:: python
>>> msgspec.json.encode(123)
b"123"
>>> msgspec.json.decode(b"123", type=int)
123
If ``strict=False`` is specified, string values may also be coerced to
integers, following the same restrictions as above. Likewise floats that have
an exact integer representation (i.e. no decimal component) may also be coerced
as integers. See :ref:`strict-vs-lax` for more information.
.. code-block:: python
>>> msgspec.json.decode(b'"123"', type=int, strict=False)
123
>>> msgspec.json.decode(b'123.0', type=int, strict=False)
123
``float``
---------
Floats map to floats in all supported protocols. Note that per RFC8259_, JSON
doesn't support nonfinite numbers (``nan``, ``infinity``, ``-infinity``);
``msgspec.json`` handles this by encoding these values as ``null``. The
``msgpack``, ``toml``, and ``yaml`` protocols lack this restriction, and can
accurately roundtrip any IEEE754 64 bit floating point value.
For all protocols, if a `float` type is specified and an `int` value is
provided, the `int` will be automatically converted.
.. code-block:: python
>>> msgspec.json.encode(123.0)
b"123.0"
>>> # JSON doesn't support nonfinite values, these serialize as null
... msgspec.json.encode(float("nan"))
b"null"
>>> msgspec.json.decode(b"123.0", type=float)
123.0
>>> # Ints are automatically converted to floats
... msgspec.json.decode(b"123", type=float)
123.0
If ``strict=False`` is specified, string values may also be coerced to floats.
Note that in this case the strings ``"nan"``, ``"inf"``/``"infinity"``,
``"-inf"``/``"-infinity"`` (case insensitive) will coerce to
``nan``/``inf``/``-inf``. See :ref:`strict-vs-lax` for more information.
.. code-block:: python
>>> msgspec.json.decode(b'"123.45"', type=float, strict=False)
123.45
>>> msgspec.json.decode(b'"-inf"', type=float, strict=False)
-inf
``str``
-------
Strings map to strings in all supported protocols.
Note that for JSON, only the characters required by RFC8259_ are escaped to
ascii; unicode characters (e.g. ``"𝄞"``) are *not* escaped and are serialized
directly as UTF-8 bytes.
.. code-block:: python
>>> msgspec.json.encode("Hello, world!")
b'"Hello, world!"'
>>> msgspec.json.encode("𝄞 is not escaped")
b'"\xf0\x9d\x84\x9e is not escaped"'
>>> msgspec.json.decode(b'"Hello, world!"')
"Hello, world!"
``bytes`` / ``bytearray`` / ``memoryview``
------------------------------------------
Bytes-like objects map to base64-encoded strings in JSON, YAML, and TOML. The
``bin`` type is used for MessagePack.
.. code-block:: python
>>> msg = msgspec.json.encode(b"\xf0\x9d\x84\x9e")
>>> msg
b'"85+Eng=="'
>>> msgspec.json.decode(msg, type=bytes)
b'\xf0\x9d\x84\x9e'
>>> msgspec.json.decode(msg, type=bytearray)
bytearray(b'\xf0\x9d\x84\x9e')
.. note::
For the ``msgpack`` protocol, `memoryview` objects will be decoded as
direct views into the larger buffer containing the input message being
decoded. This may be useful for implementing efficient zero-copy handling
of large binary messages, but is also a potential footgun. As long as a
decoded ``memoryview`` remains in memory, the input message buffer will
also be persisted, potentially resulting in unnecessarily large memory
usage. The usage of ``memoryview`` types in this manner is considered an
advanced topic, and should only be used when you know their usage will
result in a performance benefit.
For all other protocols `memoryview` objects will still result in a copy,
and will likely be slightly slower than decoding into a `bytes` object
``datetime``
------------
The encoding used for `datetime.datetime` objects depends on both the
protocol and whether these objects are timezone-aware_ or timezone-naive:
- **JSON**: Timezone-aware datetimes are encoded as RFC3339_ compatible
strings. Timezone-naive datetimes are encoded the same, but lack the timezone
component (making them not strictly RFC3339_ compatible, but still ISO8601_
compatible).
- **MessagePack**: Timezone-aware datetimes are encoded using the `timestamp
extension`. Timezone-naive datetimes are encoded the same, but lack the
timezone component (making them not strictly RFC3339_ compatible, but still
ISO8601_ compatible). During decoding, both string and timestamp-extension
values are supported for flexibility.
- **YAML**: Datetimes are encoded using YAML's native datetime type. Both
timezone-aware and timezone-naive datetimes are supported.
- **TOML**: Datetimes are encoded using TOML's native datetime type. Both
timezone-aware and timezone-naive datetimes are supported.
Note that you can require a `datetime.datetime` object to be timezone-aware or
timezone-naive by specifying a ``tz`` constraint (see
:ref:`datetime-constraints` for more information).
.. code-block:: python
>>> import datetime
>>> tz = datetime.timezone(datetime.timedelta(hours=6))
>>> tz_aware = datetime.datetime(2021, 4, 2, 18, 18, 10, 123, tzinfo=tz)
>>> msg = msgspec.json.encode(tz_aware)
>>> msg
b'"2021-04-02T18:18:10.000123+06:00"'
>>> msgspec.json.decode(msg, type=datetime.datetime)
datetime.datetime(2021, 4, 2, 18, 18, 10, 123, tzinfo=datetime.timezone(datetime.timedelta(seconds=21600)))
>>> tz_naive = datetime.datetime(2021, 4, 2, 18, 18, 10, 123)
>>> msg = msgspec.json.encode(tz_naive)
>>> msg
b'"2021-04-02T18:18:10.000123"'
>>> msgspec.json.decode(msg, type=datetime.datetime)
datetime.datetime(2021, 4, 2, 18, 18, 10, 123)
>>> msgspec.json.decode(b'"oops"', type=datetime.datetime)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid RFC3339 encoded datetime
Additionally, if ``strict=False`` is specified, all protocols will decode ints,
floats, or strings containing ints/floats as timezone-aware datetimes,
interpreting the value as seconds since the epoch in UTC (a `Unix Timestamp
<https://en.wikipedia.org/wiki/Unix_time>`__). See :ref:`strict-vs-lax` for
more information.
.. code-block:: python
>>> msgspec.json.decode(b"1617405490.000123", type=datetime.datetime)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `datetime`, got `float`
>>> msgspec.json.decode(b"1617405490.000123", type=datetime.datetime, strict=False)
datetime.datetime(2021, 4, 2, 18, 18, 10, 123, tzinfo=datetime.timezone.utc)
``date``
--------
`datetime.date` values map to:
- **JSON**: RFC3339_ encoded strings
- **MessagePack**: RFC3339_ encoded strings
- **YAML**: YAML's native date type
- **TOML** TOML's native date type
.. code-block:: python
>>> import datetime
>>> date = datetime.date(2021, 4, 2)
>>> msg = msgspec.json.encode(date)
>>> msg
b'"2021-04-02"'
>>> msgspec.json.decode(msg, type=datetime.date)
datetime.date(2021, 4, 2)
>>> msgspec.json.decode(b'"oops"', type=datetime.date)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid RFC3339 encoded date
``time``
--------
The encoding used for `datetime.time` objects is dependent on both the protocol
and whether these objects are timezone-aware_ or timezone-naive:
- **JSON**, **MessagePack**, and **YAML**: Timezone-aware times are encoded as
RFC3339_ compatible strings. Timezone-naive times are encoded the same, but
lack the timezone component (making them not strictly RFC3339_ compatible,
but still ISO8601_ compatible).
- **TOML**: Timezone-naive times are encoded using TOML's native time type.
Timezone-aware times aren't supported.
Note that you can require a `datetime.time` object to be timezone-aware or
timezone-naive by specifying a ``tz`` constraint (see
:ref:`datetime-constraints` for more information).
.. code-block:: python
>>> import datetime
>>> tz = datetime.timezone(datetime.timedelta(hours=6))
>>> tz_aware = datetime.time(18, 18, 10, 123, tzinfo=tz)
>>> msg = msgspec.json.encode(tz_aware)
>>> msg
b'"18:18:10.000123+06:00"'
>>> msgspec.json.decode(msg, type=datetime.time)
datetime.time(18, 18, 10, 123, tzinfo=datetime.timezone(datetime.timedelta(seconds=21600)))
>>> tz_naive = datetime.time(18, 18, 10, 123)
>>> msg = msgspec.json.encode(tz_naive)
>>> msg
b'"18:18:10.000123"'
>>> msgspec.json.decode(msg, type=datetime.time)
datetime.time(18, 18, 10, 123)
>>> msgspec.json.decode(b'"oops"', type=datetime.time)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid RFC3339 encoded time
``timedelta``
-------------
`datetime.timedelta` values map to extended `ISO 8601 duration strings`_ in all
protocols.
The format as described in the ISO specification is fairly lax and a bit
underspecified, leading most real-world implementations to implement a stricter
subset.
The duration format used here is as follows:
.. code-block:: text
[+/-]P[#D][T[#H][#M][#S]]
- The format starts with an optional sign (``-`` or ``+``). If negative, the
whole duration is negated.
- The letter ``P`` follows (case insensitive)
- There are then four segments, each consisting of a number and unit. The units
are ``D``, ``H``, ``M``, ``S`` (case insensitive) for days, hours, minutes,
and seconds respectively. These segments must occur in this order.
- If a segment would have a 0 value it may be omitted, with the caveat that at
least one segment must be present.
- If a time (hour, minute, or second) segment is present then the letter ``T``
(case insensitive) must precede the first time segment. Likewise if a ``T``
is present, there must be at least 1 segment after the ``T``.
- Each segment is composed of 1 or more digits, followed by the unit. Leading
0s are accepted. The *final* segment may include a decimal component if
needed.
A few examples:
.. code-block:: python
"P0D" # 0 days
"P1D" # 1 Day
"PT1H30S" # 1 Hour and 30 minutes
"PT1.5H" # 1 Hour and 30 minutes
"-PT1M30S" # -90 seconds
"PT1H30M25.5S" # 1 Hour, 30 minutes, and 25.5 seconds
While msgspec will decode duration strings making use of the ``H`` (hour) or
``M`` (minute) units, durations encoded by msgspec will only consist of ``D``
(day) and ``S`` (second) segments.
The implementation in ``msgspec`` is compatible with the ones in:
- Java's ``time.Duration.parse`` (`docs <https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html#parse(java.lang.CharSequence)>`__)
- Javascript's proposed ``Temporal.Duration`` standard API (`docs <https://tc39.es/proposal-temporal/docs/duration.html>`__)
- Python libraries like pendulum_ or pydantic_.
Duration strings produced by msgspec should be interchangeable with these
libraries, as well as similar ones in other language ecosystems.
.. code-block:: python
>>> from datetime import timedelta
>>> msgspec.json.encode(timedelta(seconds=123))
b'"PT123S"'
>>> msgspec.json.encode(timedelta(days=1, seconds=30, microseconds=123))
b'"P1DT30.000123S"'
>>> msgspec.json.decode(b'"PT123S"', type=timedelta)
datetime.timedelta(seconds=123)
>>> msgspec.json.decode(b'"PT1.5M"', type=timedelta)
datetime.timedelta(seconds=90)
>>> msgspec.json.decode(b'"oops"', type=datetime.timedelta)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid ISO8601 duration
Additionally, if ``strict=False`` is specified, all protocols will decode ints,
floats, or strings containing ints/floats as timedeltas, interpreting the value
as total seconds. See :ref:`strict-vs-lax` for more information.
.. code-block:: python
>>> msgspec.json.decode(b"123.4", type=datetime.timedelta)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `duration`, got `float`
>>> msgspec.json.decode(b"123.4", type=datetime.timedelta, strict=False)
datetime.timedelta(seconds=123, microseconds=400000)
``uuid``
--------
`uuid.UUID` values are serialized as RFC4122_ encoded canonical strings in all
protocols by default. Subclasses of `uuid.UUID` are also supported for encoding
only.
.. code-block:: python
>>> import uuid
>>> u = uuid.UUID("c4524ac0-e81e-4aa8-a595-0aec605a659a")
>>> msgspec.json.encode(u)
b'"c4524ac0-e81e-4aa8-a595-0aec605a659a"'
>>> msgspec.json.decode(b'"c4524ac0-e81e-4aa8-a595-0aec605a659a"', type=uuid.UUID)
UUID('c4524ac0-e81e-4aa8-a595-0aec605a659a')
>>> msgspec.json.decode(b'"oops"', type=uuid.UUID)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid UUID
Alternative formats are also supported by the JSON and MessagePack encoders.
The format may be selected by passing it to ``uuid_format`` when creating an
``Encoder``. The following options are supported:
- ``canonical``: UUIDs are encoded as RFC4122_ canonical strings (same as
``str(uuid)``). This is the default.
- ``hex``: UUIDs are encoded as RFC4122_ hex strings (same as ``uuid.hex``).
- ``bytes``: UUIDs are encoded as binary values of the uuid's big-endian
128-bit integer representation (same as ``uuid.bytes``). This is only supported
by the MessagePack encoder.
When decoding, any of the above formats are accepted.
.. code-block:: python
>>> enc = msgspec.json.Encoder(uuid_format="hex")
>>> uuid_hex = enc.encode(u)
>>> uuid_hex
b'"c4524ac0e81e4aa8a5950aec605a659a"'
>>> msgspec.json.decode(uuid_hex, type=uuid.UUID)
UUID('c4524ac0-e81e-4aa8-a595-0aec605a659a')
>>> enc = msgspec.msgpack.Encoder(uuid_format="bytes")
>>> uuid_bytes = enc.encode(u)
>>> msgspec.msgpack.decode(uuid_bytes, type=uuid.UUID)
UUID('c4524ac0-e81e-4aa8-a595-0aec605a659a')
``decimal``
-----------
`decimal.Decimal` values are encoded as their string representation in all
protocols by default. This ensures no precision loss during serialization, as
would happen with a float representation.
.. code-block:: python
>>> import decimal
>>> x = decimal.Decimal("1.2345")
>>> msg = msgspec.json.encode(x)
>>> msg
b'"1.2345"'
>>> msgspec.json.decode(msg, type=decimal.Decimal)
Decimal('1.2345')
>>> msgspec.json.decode(b'"oops"', type=decimal.Decimal)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid decimal string
For JSON and MessagePack you may instead encode decimal values the same as
numbers by creating a ``Encoder`` and specifying ``decimal_format='number'``.
.. code-block:: python
>>> encoder = msgspec.json.Encoder(decimal_format="number")
>>> encoder.encode(x)
b'1.2345'
This setting is not yet supported for YAML or TOML - if this option is
important for you please `open an issue`_.
All protocols will also decode `decimal.Decimal` values from ``int`` or
``float`` inputs. For JSON the value is parsed directly from the serialized
bytes, avoiding any precision loss:
.. code-block:: python
>>> msgspec.json.decode(b"1.3", type=decimal.Decimal)
Decimal('1.3')
>>> msgspec.json.decode(b"1.300", type=decimal.Decimal)
Decimal('1.300')
>>> msgspec.json.decode(b"0.1234567891234567811", type=decimal.Decimal)
Decimal('0.1234567891234567811')
Other protocols will coerce float inputs to the shortest decimal value that
roundtrips back to the corresponding IEEE754 float representation (this is
effectively equivalent to ``decimal.Decimal(str(float_val))``). This may result
in precision loss for some inputs! In general we recommend avoiding parsing
`decimal.Decimal` values from anything but strings.
.. code-block:: python
>>> msgspec.yaml.decode(b"1.3", type=decimal.Decimal)
Decimal('1.3')
>>> msgspec.yaml.decode(b"1.300", type=decimal.Decimal) # trailing 0s truncated!
Decimal('1.3')
>>> msgspec.yaml.decode(b"0.1234567891234567811", type=decimal.Decimal) # precision loss!
Decimal('0.12345678912345678')
``list`` / ``tuple`` / ``set`` / ``frozenset``
----------------------------------------------
`list`, `tuple`, `set`, and `frozenset` objects map to arrays in all protocols.
An error is raised if the elements don't match the specified element type (if
provided).
Subclasses of these types are also supported for encoding only. To decode into
a ``list`` subclass you'll need to implement a ``dec_hook`` (see
:doc:`extending`).
.. code-block:: python
>>> msgspec.json.encode([1, 2, 3])
b'[1,2,3]'
>>> msgspec.json.encode({1, 2, 3})
b'[1,2,3]'
>>> msgspec.json.decode(b'[1,2,3]', type=set)
{1, 2, 3}
>>> from typing import Set
>>> # Decode as a set of ints
... msgspec.json.decode(b'[1, 2, 3]', type=Set[int])
{1, 2, 3}
>>> # Oops, all elements should be ints
... msgspec.json.decode(b'[1, 2, "oops"]', type=Set[int])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str` - at `$[2]`
``NamedTuple``
--------------
`typing.NamedTuple` types map to arrays in all protocols. An error is raised
during decoding if the type doesn't match or if any required fields are
missing.
Note that ``msgspec`` supports both `typing.NamedTuple` and
`collections.namedtuple`, although the latter lacks a way to specify field
types.
When possible we recommend using `msgspec.Struct` (possibly with
``array_like=True`` and ``frozen=True``) instead of ``NamedTuple`` for
specifying schemas - :doc:`structs` are faster, more ergonomic, and support
additional features. Still, you may want to use a ``NamedTuple`` if you're
already using them elsewhere, or if you have downstream code that requires a
``tuple`` instead of an object.
.. code-block:: python
>>> from typing import NamedTuple
>>> class Person(NamedTuple):
... name: str
... age: int
>>> ben = Person("ben", 25)
>>> msg = msgspec.json.encode(ben)
>>> msgspec.json.decode(msg, type=Person)
Person(name='ben', age=25)
>>> wrong_type = b'["chad", "twenty"]'
>>> msgspec.json.decode(wrong_type, type=Person)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str` - at `$[1]`
Other types that duck-type as ``NamedTuple`` (for example
`edgedb NamedTuples <https://www.edgedb.com/docs/clients/python/api/types#named-tuples>`__)
are also supported.
.. code-block:: python
>>> import edgedb
>>> client = edgedb.create_client()
>>> alice = client.query_single(
... "SELECT (name := 'Alice', dob := <cal::local_date>'1984-03-01')"
... )
>>> alice
(name := 'Alice', dob := datetime.date(1984, 3, 1))
>>> msgspec.json.encode(alice)
b'["Alice","1984-03-01"]'
``dict``
--------
Dicts encode/decode as objects/maps in all protocols.
Dict subclasses (`collections.OrderedDict`, for example) are also supported for
encoding only. To decode into a ``dict`` subclass you'll need to implement a
``dec_hook`` (see :doc:`extending`).
JSON and TOML only support key types that encode as strings or numbers (for
example `str`, `int`, `float`, `enum.Enum`, `datetime.datetime`, `uuid.UUID`,
...). MessagePack and YAML support any hashable for the key type.
An error is raised during decoding if the keys or values don't match their
respective types (if specified).
.. code-block:: python
>>> msgspec.json.encode({"x": 1, "y": 2})
b'{"x":1,"y":2}'
>>> from typing import Dict
>>> # Decode as a Dict of str -> int
... msgspec.json.decode(b'{"x":1,"y":2}', type=Dict[str, int])
{"x": 1, "y": 2}
>>> # Oops, there's a mistyped value
... msgspec.json.decode(b'{"x":1,"y":"oops"}', type=Dict[str, int])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str` - at `$[...]`
``TypedDict``
-------------
`typing.TypedDict` provides a way to specify different types for different
values in a ``dict``, rather than a single value type (the ``int`` in
``Dict[str, int]``, for example). At runtime these are just standard
``dict`` types, the ``TypedDict`` type is only there to provide the schema
information during decoding. Note that ``msgspec`` supports both
`typing.TypedDict` and ``typing_extensions.TypedDict`` (a backport).
`typing.TypedDict` types map to objects/maps in all protocols. During decoding,
any extra fields are ignored. An error is raised during decoding if the type
doesn't match or if any required fields are missing.
When possible we recommend using `msgspec.Struct` instead of ``TypedDict`` for
specifying schemas - :doc:`structs` are faster, more ergonomic, and support
additional features. Still, you may want to use a ``TypedDict`` if you're
already using them elsewhere, or if you have downstream code that requires a
``dict`` instead of an object.
.. code-block:: python
>>> from typing import TypedDict
>>> class Person(TypedDict):
... name: str
... age: int
>>> ben = {"name": "ben", "age": 25}
>>> msg = msgspec.json.encode(ben)
>>> msgspec.json.decode(msg, type=Person)
{'name': 'ben', 'age': 25}
>>> wrong_type = b'{"name": "chad", "age": "twenty"}'
>>> msgspec.json.decode(wrong_type, type=Person)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str` - at `$.age`
``dataclasses``
---------------
`dataclasses` map to objects/maps in all protocols.
During decoding, any extra fields are ignored. An error is raised if a field's
type doesn't match or if any required fields are missing.
If a ``__post_init__`` method is defined on the dataclass, it is called after
the object is decoded. Note that `"Init-only parameters"
<https://docs.python.org/3/library/dataclasses.html#init-only-variables>`__
(i.e. ``InitVar`` fields) are _not_ supported.
When possible we recommend using `msgspec.Struct` instead of dataclasses for
specifying schemas - :doc:`structs` are faster, more ergonomic, and support
additional features.
.. code-block:: python
>>> from dataclasses import dataclass
>>> @dataclass
... class Person:
... name: str
... age: int
>>> carol = Person(name="carol", age=32)
>>> msg = msgspec.json.encode(carol)
>>> msgspec.json.decode(msg, type=Person)
Person(name='carol', age=32)
>>> wrong_type = b'{"name": "doug", "age": "thirty"}'
>>> msgspec.json.decode(wrong_type, type=Person)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str` - at `$.age`
Other types that duck-type as ``dataclasses`` (for example
`edgedb Objects <https://www.edgedb.com/docs/clients/python/api/types#objects>`__ or
`pydantic dataclasses <https://docs.pydantic.dev/latest/usage/dataclasses/>`__)
are also supported.
.. code-block:: python
>>> import edgedb
>>> client = edgedb.create_client()
>>> alice = client.query_single(
... "SELECT User {name, dob} FILTER .name = <str>$name LIMIT 1",
... name="Alice"
... )
>>> alice
Object{name := 'Alice', dob := datetime.date(1984, 3, 1)}
>>> msgspec.json.encode(alice)
b'{"id":"a6b951cc-2d00-11ee-91aa-b3f17e9898ce","name":"Alice","dob":"1984-03-01"}'
For a more complete example using EdgeDB, see :doc:`examples/edgedb`.
``attrs``
---------
attrs_ types map to objects/maps in all protocols.
During encoding, all attributes without a leading underscore (``"_"``) are
encoded.
During decoding, any extra fields are ignored. An error is raised if a field's
type doesn't match or if any required fields are missing.
If the ``__attrs_pre_init__`` or ``__attrs_post_init__`` methods are defined on
the class, they are called as part of the decoding process. Likewise, if a
class makes use of attrs' `validators
<https://www.attrs.org/en/stable/examples.html#validators>`__, the validators
will be called, and a `msgspec.ValidationError` raised on error. Note that
attrs' `converters
<https://www.attrs.org/en/stable/examples.html#conversion>`__ are not currently
supported.
When possible we recommend using `msgspec.Struct` instead of attrs_ types for
specifying schemas - :doc:`structs` are faster, more ergonomic, and support
additional features.
.. code-block:: python
>>> from attrs import define
>>> @define
... class Person:
... name: str
... age: int
>>> carol = Person(name="carol", age=32)
>>> msg = msgspec.json.encode(carol)
>>> msgspec.json.decode(msg, type=Person)
Person(name='carol', age=32)
>>> wrong_type = b'{"name": "doug", "age": "thirty"}'
>>> msgspec.json.decode(wrong_type, type=Person)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str` - at `$.age`
``Struct``
----------
Structs are the preferred way of defining structured data types in ``msgspec``.
You can think of them as similar to dataclasses_/attrs_/pydantic_, but much
faster to create/compare/encode/decode. For more information, see the
:doc:`structs` page.
By default `msgspec.Struct` types map to objects/maps in all protocols. During
decoding, any unknown fields are ignored (this can be disabled, see
:ref:`forbid-unknown-fields`), and any missing optional fields have their
default values applied. An error is raised during decoding if the type doesn't
match or if any required fields are missing.
.. code-block:: python
>>> from typing import Set, Optional
>>> class User(msgspec.Struct):
... name: str
... groups: Set[str] = set()
... email: Optional[str] = None
>>> alice = User("alice", groups={"admin", "engineering"})
>>> msgspec.json.encode(alice)
b'{"name":"alice","groups":["admin","engineering"],"email":null}'
>>> msg = b"""
... {
... "name": "bob",
... "email": "bob@company.com",
... "unknown_field": [1, 2, 3]
... }
... """
>>> msgspec.json.decode(msg, type=User)
User(name='bob', groups=[], email="bob@company.com")
>>> wrong_type = b"""
... {
... "name": "bob",
... "groups": ["engineering", 123]
... }
... """
>>> msgspec.json.decode(wrong_type, type=User)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `str`, got `int` - at `$.groups[1]`
If you pass ``array_like=True`` when defining the struct type, they're instead
treated as array types during encoding/decoding. In this case fields are
serialized in their :ref:`field order <struct-field-ordering>`. This can
further improve performance at the cost of less human readable messaging. Like
``array_like=False`` (the default) structs, extra (trailing) fields are ignored
during decoding, and any missing optional fields have their defaults applied.
Type checking also still applies.
.. code-block:: python
>>> from typing import Set, Optional
>>> class User(msgspec.Struct, array_like=True):
... name: str
... groups: Set[str] = set()
... email: Optional[str] = None
>>> alice = User("alice", groups={"admin", "engineering"})
>>> msgspec.json.encode(alice)
b'["alice",["admin","engineering"],null]'
>>> msgspec.json.decode(b'["bob"]', type=User)
User(name="bob", groups=[], email=None)
>>> msgspec.json.decode(b'["carol", ["admin"], null, ["extra", "field"]]', type=User)
User(name="carol", groups=["admin"], email=None)
>>> msgspec.json.decode(b'["david", ["finance", 123]]')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `str`, got `int` - at `$[1][1]`
.. _unset-type:
``UNSET``
---------
`msgspec.UNSET` is a singleton object used to indicate that a field has no set
value. This is useful for cases where you need to differentiate between a
message where a field is missing and a message where the field is explicitly
``None``.
.. code-block:: python
>>> from msgspec import Struct, UnsetType, UNSET, json
>>> class Example(Struct):
... x: int
... y: int | None | UnsetType = UNSET # a field, defaulting to UNSET
During encoding, any field containing ``UNSET`` is omitted from the message.
.. code-block:: python
>>> json.encode(Example(1)) # y is UNSET
b'{"x":1}'
>>> json.encode(Example(1, UNSET)) # y is UNSET
b'{"x":1}'
>>> json.encode(Example(1, None)) # y is None
b'{"x":1,"y":null}'
>>> json.encode(Example(1, 2)) # y is 2
b'{"x":1,"y":2}'
During decoding, if a field isn't explicitly set in the message, the default
value of ``UNSET`` will be set instead. This lets downstream consumers
determine whether a field was left unset, or explicitly set to ``None``
.. code-block:: python
>>> json.decode(b'{"x": 1}', type=Example) # y defaults to UNSET
Example(x=1, y=UNSET)
>>> json.decode(b'{"x": 1, "y": null}', type=Example) # y is None
Example(x=1, y=None)
>>> json.decode(b'{"x": 1, "y": 2}', type=Example) # y is 2
Example(x=1, y=2)
``UNSET`` fields are supported for `msgspec.Struct`, `dataclasses`, and attrs_
types. It is an error to use `msgspec.UNSET` or `msgspec.UnsetType` anywhere
other than a field for one of these types.
``Enum`` / ``IntEnum`` / ``StrEnum``
------------------------------------
Enum types (`enum.Enum`, `enum.IntEnum`, `enum.StrEnum`, ...) encode as their
member *values* in all protocols.
Any enum whose *value* is a supported type may be encoded, but only enums
composed of all string or all integer values may be decoded.
An error is raised during decoding if the value isn't the proper type, or
doesn't match any valid member.
.. code-block:: python
>>> import enum
>>> class Fruit(enum.Enum):
... APPLE = "apple"
... BANANA = "banana"
>>> msgspec.json.encode(Fruit.APPLE)
b'"apple"'
>>> msgspec.json.decode(b'"apple"', type=Fruit)
<Fruit.APPLE: 'apple'>
>>> msgspec.json.decode(b'"grape"', type=Fruit)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid enum value 'grape'
>>> class JobState(enum.IntEnum):
... CREATED = 0
... RUNNING = 1
... SUCCEEDED = 2
... FAILED = 3
>>> msgspec.json.encode(JobState.RUNNING)
b'1'
>>> msgspec.json.decode(b'2', type=JobState)
<JobState.SUCCEEDED: 2>
>>> msgspec.json.decode(b'4', type=JobState)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid enum value 4
If the enum type includes a ``_missing_`` method (`docs
<https://docs.python.org/3/library/enum.html#enum.Enum._missing_>`__), this
method will be called to handle any missing values. It should return a valid
enum member, or ``None`` if the value is invalid. One potential use case of
this is supporting case-insensitive enums:
.. code-block:: python
>>> import enum
>>> class Fruit(enum.Enum):
... APPLE = "apple"
... BANANA = "banana"
...
... @classmethod
... def _missing_(cls, name):
... """Called to handle missing enum values"""
... # Normalize value to lowercase
... value = name.lower()
... # Return valid enum value, or None if invalid
... return cls._value2member_map_.get(value)
>>> msgspec.json.decode(b'"apple"', type=Fruit)
<Fruit.APPLE: "apple">
>>> msgspec.json.decode(b'"ApPlE"', type=Fruit)
<Fruit.APPLE: "apple">
>>> msgspec.json.decode(b'"grape"', type=Fruit)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid enum value 'grape'
``Literal``
-----------
`typing.Literal` types can be used to ensure that a decoded object is within a
set of valid values. An `enum.Enum` or `enum.IntEnum` can be used for the same
purpose, but with a `typing.Literal` the decoded values are literal `int` or
`str` instances rather than `enum` objects.
A literal can be composed of any of the following objects:
- `None`
- `int` values
- `str` values
- Nested `typing.Literal` types
An error is raised during decoding if the value isn't in the set of valid
values, or doesn't match any of their component types.
.. code-block:: python
>>> from typing import Literal
>>> msgspec.json.decode(b'1', type=Literal[1, 2, 3])
1
>>> msgspec.json.decode(b'"one"', type=Literal["one", "two", "three"])
'one'
>>> msgspec.json.decode(b'4', type=Literal[1, 2, 3])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Invalid enum value 4
>>> msgspec.json.decode(b'"bad"', type=Literal[1, 2, 3])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str`
``NewType``
-----------
`typing.NewType` types are treated identically to their base type. Their
support here is purely to aid static analysis tools like mypy_ or pyright_.
.. code-block:: python
>>> from typing import NewType
>>> UserId = NewType("UserId", int)
>>> msgspec.json.encode(UserId(1234))
b'1234'
>>> msgspec.json.decode(b'1234', type=UserId)
1234
>>> msgspec.json.decode(b'"oops"', type=UserId)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str`
Type Aliases
------------
For complex types, sometimes it can be nice to write the type once so you can
reuse it later.
.. code-block:: python
Point = tuple[float, float]
Here ``Point`` is a "type alias" for ``tuple[float, float]`` - ``msgspec``
will substitute in ``tuple[float, float]`` whenever the ``Point`` type
is used in an annotation.
``msgspec`` supports the following equivalent forms:
.. code-block:: python
# Using variable assignment
Point = tuple[float, float]
# Using variable assignment, annotated as a `TypeAlias`
Point: TypeAlias = tuple[float, float]
# Using Python 3.12's new `type` statement. This only works on Python 3.12+
type Point = tuple[float, float]
To learn more about Type Aliases, see Python's `Type Alias docs here
<https://docs.python.org/3/library/typing.html#type-aliases>`__.
Generic Types
-------------
``msgspec`` supports generic types, including `user-defined generic types`_
based on any of the following types:
- `msgspec.Struct`
- `dataclasses`
- `attrs`
- `typing.TypedDict`
- `typing.NamedTuple`
Generic types may be useful for reusing common message structures.
To define a generic type:
- Define one or more type variables (`typing.TypeVar`) to parametrize your type with.
- Add `typing.Generic` as a base class when defining your type, parametrizing
it by the relevant type variables.
- When annotating the field types, use the relevant type variables instead of
"concrete" types anywhere you want to be generic.
For example, here we define a generic ``Paginated`` struct type for storing
extra pagination information in an API response.
.. code-block:: python
import msgspec
from typing import Generic, TypeVar
# A type variable for the item type
T = TypeVar("T")
class Paginated(msgspec.Struct, Generic[T]):
"""A generic paginated API wrapper, parametrized by the item type."""
page: int # The current page number
per_page: int # Number of items per page
total: int # The total number of items found
items: list[T] # Items returned, up to `per_page` in length
This type is generic over the type of item contained in ``Paginated.items``.
This ``Paginated`` wrapper may then be used to decode a message containing a
specific item type by parametrizing it with that type. When processing a
generic type, the parametrized types are substituted for the type variables.
Here we define a ``User`` type, then use it to decode a paginated API response
containing a list of users:
.. code-block:: python
class User(msgspec.Struct):
"""A user model"""
name: str
groups: list[str] = []
json_str = """
{
"page": 1,
"per_page": 5,
"total": 252,
"items": [
{"name": "alice", "groups": ["admin"]},
{"name": "ben"},
{"name": "carol", "groups": ["engineering"]},
{"name": "dan", "groups": ["hr"]},
{"name": "ellen", "groups": ["engineering"]}
]
}
"""
# Decode a paginated response containing a list of users
msg = msgspec.json.decode(json_str, type=Paginated[User])
print(msg)
#> Paginated(
#> page=1, per_page=5, total=252,
#> items=[
#> User(name='alice', groups=['admin']),
#> User(name='ben', groups=[]),
#> User(name='carol', groups=['engineering']),
#> User(name='dan', groups=['hr']),
#> User(name='ellen', groups=['engineering'])
#> ]
#> )
If instead we wanted to decode a paginated response of another type (say
``Team``), we could do this by parametrizing ``Paginated`` with a different
type.
.. code-block:: python
# Decode a paginated response containing a list of teams
msgspec.json.decode(some_other_message, type=Paginated[Team])
Any unparametrized type variables will be treated as `typing.Any` when decoding.
.. code-block:: python
# These are equivalent.
# The unparametrized version substitutes in `Any` for `T`
msgspec.json.decode(some_other_message, type=Paginated)
msgspec.json.decode(some_other_message, type=Paginated[Any])
However, if an unparametrized type variable has a ``bound`` (`docs
<https://peps.python.org/pep-0484/#type-variables-with-an-upper-bound>`__),
then the bound type will be used instead.
.. code-block:: python
from collections.abc import Sequence
S = TypeVar("S", bound=Sequence) # Can be any sequence type
class Example(msgspec.Struct, Generic[S]):
value: S
msg = b'{"value": [1, 2, 3]}'
# These are equivalent.
# The unparametrized version substitutes in `Sequence` for `S`
msgspec.json.decode(some_other_message, type=Example)
msgspec.json.decode(some_other_message, type=Example[Sequence])
See the official Python docs on `generic types`_ and the `corresponding PEP
<https://peps.python.org/pep-0484/#generics>`__ for more information.
Abstract Types
--------------
``msgspec`` supports several "abstract" types, decoding them as
instances of their most common concrete type.
**Decoded as lists**
- `collections.abc.Collection` / `typing.Collection`
- `collections.abc.Sequence` / `typing.Sequence`
- `collections.abc.MutableSequence` / `typing.MutableSequence`
**Decoded as sets**
- `collections.abc.Set` / `typing.AbstractSet`
- `collections.abc.MutableSet` / `typing.MutableSet`
**Decoded as dicts**
- `collections.abc.Mapping` / `typing.Mapping`
- `collections.abc.MutableMapping` / `typing.MutableMapping`
.. code-block:: python
>>> from typing import MutableMapping
>>> msgspec.json.decode(b'{"x": 1}', type=MutableMapping[str, int])
{"x": 1}
>>> msgspec.json.decode(b'{"x": "oops"}', type=MutableMapping[str, int])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int`, got `str` - at `$[...]`
``Union`` / ``Optional``
-------------------------
Type unions are supported, with a few restrictions. These restrictions are in
place to remove any ambiguity during decoding - given an encoded value there
must always be a single type in a given `typing.Union` that can decode that
value.
Union restrictions are as follows:
- Unions may contain at most one type that encodes to an integer (`int`,
`enum.IntEnum`)
- Unions may contain at most one type that encodes to a string (`str`,
`enum.Enum`, `bytes`, `bytearray`, `datetime.datetime`, `datetime.date`,
`datetime.time`, `uuid.UUID`, `decimal.Decimal`). Note that this restriction
is fixable with some work, if this is a feature you need please `open an issue`_.
- Unions may contain at most one type that encodes to an object (`dict`,
`typing.TypedDict`, dataclasses_, attrs_, `Struct` with ``array_like=False``)
- Unions may contain at most one type that encodes to an array (`list`,
`tuple`, `set`, `frozenset`, `typing.NamedTuple`, `Struct` with
``array_like=True``).
- Unions may contain at most one *untagged* `Struct` type. Unions containing
multiple struct types are only supported through :ref:`struct-tagged-unions`.
- Unions with custom types are unsupported beyond optionality (i.e.
``Optional[CustomType]``)
.. code-block:: python
>>> from typing import Union, List
>>> # A decoder expecting either an int, a str, or a list of strings
... decoder = msgspec.json.Decoder(Union[int, str, List[str]])
>>> decoder.decode(b'1')
1
>>> decoder.decode(b'"two"')
"two"
>>> decoder.decode(b'["three", "four"]')
["three", "four"]
>>> decoder.decode(b'false')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
msgspec.ValidationError: Expected `int | str | array`, got `bool`
``Raw``
-------
`msgspec.Raw` is a buffer-like type containing an already encoded messages.
They have two common uses:
**1. Avoiding unnecessary encoding cost**
Wrapping an already encoded buffer in `msgspec.Raw` lets the encoder avoid
re-encoding the message, instead it will simply be copied to the output buffer.
This can be useful when part of a message already exists in an encoded format
(e.g. reading JSON bytes from a database and returning them as part of a larger
message).
.. code-block:: python
>>> import msgspec
>>> # Create a new `Raw` object wrapping a pre-encoded message
... fragment = msgspec.Raw(b'{"x": 1, "y": 2}')
>>> # Compose a larger message containing the pre-encoded fragment
... msg = {"a": 1, "b": fragment}
>>> # During encoding, the raw message is efficiently copied into
... # the output buffer, avoiding any extra encoding cost
... msgspec.json.encode(msg)
b'{"a":1,"b":{"x": 1, "y": 2}}'
**2. Delaying decoding of part of a message**
Sometimes the type of a serialized value depends on the value of other fields
in a message. ``msgspec`` provides an optimized version of one common pattern
(:ref:`struct-tagged-unions`), but if you need to do something more complicated
you may find using `msgspec.Raw` useful here.
For example, here we demonstrate how to decode a message where the type of one
field (``point``) depends on the value of another (``dimensions``).
.. code-block:: python
>>> import msgspec
>>> from typing import Union
>>> class Point1D(msgspec.Struct):
... x: int
>>> class Point2D(msgspec.Struct):
... x: int
... y: int
>>> class Point3D(msgspec.Struct):
... x: int
... y: int
... z: int
>>> class Model(msgspec.Struct):
... dimensions: int
... point: msgspec.Raw # use msgspec.Raw to delay decoding the point field
>>> def decode_point(msg: bytes) -> Union[Point1D, Point2D, Point3D]:
... """A function for efficiently decoding the `point` field"""
... # First decode the outer `Model` struct. Decoding of the `point`
... # field is delayed, with the composite bytes stored as a `Raw` object
... # on `point`.
... model = msgspec.json.decode(msg, type=Model)
...
... # Based on the value of `dimensions`, determine which type to use
... # when decoding the `point` field
... if model.dimensions == 1:
... point_type = Point1D
... elif model.dimensions == 2:
... point_type = Point2D
... elif model.dimensions == 3:
... point_type = Point3D
... else:
... raise ValueError("Too many dimensions!")
...
... # Now that we know the type of `point`, we can finish decoding it.
... # Note that `Raw` objects are buffer-like, and can be passed
... # directly to the `decode` method.
... return msgspec.json.decode(model.point, type=point_type)
>>> decode_point(b'{"dimensions": 2, "point": {"x": 1, "y": 2}}')
Point2D(x=1, y=2)
>>> decode_point(b'{"dimensions": 3, "point": {"x": 1, "y": 2, "z": 3}}')
Point3D(x=1, y=2, z=3)
``Any``
-------
When decoding a message with `Any` type (or no type specified), encoded types
map to Python types in a protocol specific manner.
**JSON**
JSON_ types are decoded to Python types as follows:
- ``null``: `None`
- ``bool``: `bool`
- ``string``: `str`
- ``number``: `int` or `float` [#number_json]_
- ``array``: `list`
- ``object``: `dict`
.. [#number_json] Numbers are decoded as integers if they contain no decimal or
exponent components (e.g. ``1`` but not ``1.0`` or ``1e10``). All other
numbers decode as floats.
**MessagePack**
MessagePack_ types are decoded to Python types as follows:
- ``nil``: `None`
- ``bool``: `bool`
- ``int``: `int`
- ``float``: `float`
- ``str``: `str`
- ``bin``: `bytes`
- ``array``: `list` or `tuple` [#tuple]_
- ``map``: `dict`
- ``ext``: `msgspec.msgpack.Ext`, `datetime.datetime`, or a custom type
.. [#tuple] Tuples are only used when the array type must be hashable (e.g.
keys in a ``dict`` or ``set``). All other array types are deserialized as lists
by default.
**YAML**
YAML_ types are decoded to Python types as follows:
- ``null``: `None`
- ``bool``: `bool`
- ``string``: `str`
- ``int``: `int`
- ``float``: `float`
- ``array``: `list`
- ``object``: `dict`
- ``timestamp``: `datetime.datetime`
- ``date``: `datetime.date`
**TOML**
TOML_ types are decoded to Python types as follows:
- ``bool``: `bool`
- ``string``: `str`
- ``int``: `int`
- ``float``: `float`
- ``array``: `list`
- ``table``: `dict`
- ``datetime``: `datetime.datetime`
- ``date``: `datetime.date`
- ``time``: `datetime.time`
.. _type annotations: https://docs.python.org/3/library/typing.html
.. _JSON: https://json.org
.. _MessagePack: https://msgpack.org
.. _YAML: https://yaml.org
.. _TOML: https://toml.io
.. _pydantic: https://pydantic-docs.helpmanual.io/
.. _pendulum: https://pendulum.eustace.io/
.. _RFC8259: https://datatracker.ietf.org/doc/html/rfc8259
.. _RFC3339: https://datatracker.ietf.org/doc/html/rfc3339
.. _RFC4122: https://datatracker.ietf.org/doc/html/rfc4122
.. _ISO8601: https://en.wikipedia.org/wiki/ISO_8601
.. _timestamp extension: https://github.com/msgpack/msgpack/blob/master/spec.md#timestamp-extension-type
.. _dataclasses: https://docs.python.org/3/library/dataclasses.html
.. _attrs: https://www.attrs.org/en/stable/index.html
.. _timezone-aware: https://docs.python.org/3/library/datetime.html#aware-and-naive-objects
.. _mypy: https://mypy.readthedocs.io
.. _pyright: https://github.com/microsoft/pyright
.. _generic types:
.. _user-defined generic types: https://docs.python.org/3/library/typing.html#user-defined-generic-types
.. _open an issue: https://github.com/jcrist/msgspec/issues>
.. _ISO 8601 duration strings: https://en.wikipedia.org/wiki/ISO_8601#Durations
|