1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
from __future__ import annotations
import re
import textwrap
from collections.abc import Iterable
from typing import Any, Optional, Callable
from . import inspect as mi, to_builtins
__all__ = ("schema", "schema_components")
def schema(
type: Any, *, schema_hook: Optional[Callable[[type], dict[str, Any]]] = None
) -> dict[str, Any]:
"""Generate a JSON Schema for a given type.
Any schemas for (potentially) shared components are extracted and stored in
a top-level ``"$defs"`` field.
If you want to generate schemas for multiple types, or to have more control
over the generated schema you may want to use ``schema_components`` instead.
Parameters
----------
type : type
The type to generate the schema for.
schema_hook : callable, optional
An optional callback to use for generating JSON schemas of custom
types. Will be called with the custom type, and should return a dict
representation of the JSON schema for that type.
Returns
-------
schema : dict
The generated JSON Schema.
See Also
--------
schema_components
"""
(out,), components = schema_components((type,), schema_hook=schema_hook)
if components:
out["$defs"] = components
return out
def schema_components(
types: Iterable[Any],
*,
schema_hook: Optional[Callable[[type], dict[str, Any]]] = None,
ref_template: str = "#/$defs/{name}",
) -> tuple[tuple[dict[str, Any], ...], dict[str, Any]]:
"""Generate JSON Schemas for one or more types.
Any schemas for (potentially) shared components are extracted and returned
in a separate ``components`` dict.
Parameters
----------
types : Iterable[type]
An iterable of one or more types to generate schemas for.
schema_hook : callable, optional
An optional callback to use for generating JSON schemas of custom
types. Will be called with the custom type, and should return a dict
representation of the JSON schema for that type.
ref_template : str, optional
A template to use when generating ``"$ref"`` fields. This template is
formatted with the type name as ``template.format(name=name)``. This
can be useful if you intend to store the ``components`` mapping
somewhere other than a top-level ``"$defs"`` field. For example, you
might use ``ref_template="#/components/{name}"`` if generating an
OpenAPI schema.
Returns
-------
schemas : tuple[dict]
A tuple of JSON Schemas, one for each type in ``types``.
components : dict
A mapping of name to schema for any shared components used by
``schemas``.
See Also
--------
schema
"""
type_infos = mi.multi_type_info(types)
component_types = _collect_component_types(type_infos)
name_map = _build_name_map(component_types)
gen = _SchemaGenerator(name_map, schema_hook, ref_template)
schemas = tuple(gen.to_schema(t) for t in type_infos)
components = {
name_map[cls]: gen.to_schema(t, False) for cls, t in component_types.items()
}
return schemas, components
def _collect_component_types(type_infos: Iterable[mi.Type]) -> dict[Any, mi.Type]:
"""Find all types in the type tree that are "nameable" and worthy of being
extracted out into a shared top-level components mapping.
Currently this looks for Struct, Dataclass, NamedTuple, TypedDict, and Enum
types.
"""
components = {}
def collect(t):
if isinstance(
t, (mi.StructType, mi.TypedDictType, mi.DataclassType, mi.NamedTupleType)
):
if t.cls not in components:
components[t.cls] = t
for f in t.fields:
collect(f.type)
elif isinstance(t, mi.EnumType):
components[t.cls] = t
elif isinstance(t, mi.Metadata):
collect(t.type)
elif isinstance(t, mi.CollectionType):
collect(t.item_type)
elif isinstance(t, mi.TupleType):
for st in t.item_types:
collect(st)
elif isinstance(t, mi.DictType):
collect(t.key_type)
collect(t.value_type)
elif isinstance(t, mi.UnionType):
for st in t.types:
collect(st)
for t in type_infos:
collect(t)
return components
def _type_repr(obj):
return obj.__name__ if isinstance(obj, type) else repr(obj)
def _get_class_name(cls: Any) -> str:
if hasattr(cls, "__origin__"):
name = cls.__origin__.__name__
args = ", ".join(_type_repr(a) for a in cls.__args__)
return f"{name}[{args}]"
return cls.__name__
def _get_doc(t: mi.Type) -> str:
assert hasattr(t, "cls")
cls = getattr(t.cls, "__origin__", t.cls)
doc = getattr(cls, "__doc__", "")
if not doc:
return ""
doc = textwrap.dedent(doc).strip("\r\n")
if isinstance(t, mi.EnumType):
if doc == "An enumeration.":
return ""
elif isinstance(t, (mi.NamedTupleType, mi.DataclassType)):
if doc.startswith(f"{cls.__name__}(") and doc.endswith(")"):
return ""
return doc
def _build_name_map(component_types: dict[Any, mi.Type]) -> dict[Any, str]:
"""A mapping from nameable subcomponents to a generated name.
The generated name is usually a normalized version of the class name. In
the case of conflicts, the name will be expanded to also include the full
import path.
"""
def normalize(name):
return re.sub(r"[^a-zA-Z0-9.\-_]", "_", name)
def fullname(cls):
return normalize(f"{cls.__module__}.{cls.__qualname__}")
conflicts = set()
names: dict[str, Any] = {}
for cls in component_types:
name = normalize(_get_class_name(cls))
if name in names:
old = names.pop(name)
conflicts.add(name)
names[fullname(old)] = old
if name in conflicts:
names[fullname(cls)] = cls
else:
names[name] = cls
return {v: k for k, v in names.items()}
class _SchemaGenerator:
def __init__(
self,
name_map: dict[Any, str],
schema_hook: Optional[Callable[[type], dict[str, Any]]] = None,
ref_template: str = "#/$defs/{name}",
):
self.name_map = name_map
self.schema_hook = schema_hook
self.ref_template = ref_template
def to_schema(self, t: mi.Type, check_ref: bool = True) -> dict[str, Any]:
"""Converts a Type to a json-schema."""
schema: dict[str, Any] = {}
while isinstance(t, mi.Metadata):
schema = mi._merge_json(schema, t.extra_json_schema)
t = t.type
if check_ref and hasattr(t, "cls"):
if name := self.name_map.get(t.cls):
schema["$ref"] = self.ref_template.format(name=name)
return schema
if isinstance(t, (mi.AnyType, mi.RawType)):
pass
elif isinstance(t, mi.NoneType):
schema["type"] = "null"
elif isinstance(t, mi.BoolType):
schema["type"] = "boolean"
elif isinstance(t, (mi.IntType, mi.FloatType)):
schema["type"] = "integer" if isinstance(t, mi.IntType) else "number"
if t.ge is not None:
schema["minimum"] = t.ge
if t.gt is not None:
schema["exclusiveMinimum"] = t.gt
if t.le is not None:
schema["maximum"] = t.le
if t.lt is not None:
schema["exclusiveMaximum"] = t.lt
if t.multiple_of is not None:
schema["multipleOf"] = t.multiple_of
elif isinstance(t, mi.StrType):
schema["type"] = "string"
if t.max_length is not None:
schema["maxLength"] = t.max_length
if t.min_length is not None:
schema["minLength"] = t.min_length
if t.pattern is not None:
schema["pattern"] = t.pattern
elif isinstance(t, (mi.BytesType, mi.ByteArrayType, mi.MemoryViewType)):
schema["type"] = "string"
schema["contentEncoding"] = "base64"
if t.max_length is not None:
schema["maxLength"] = 4 * ((t.max_length + 2) // 3)
if t.min_length is not None:
schema["minLength"] = 4 * ((t.min_length + 2) // 3)
elif isinstance(t, mi.DateTimeType):
schema["type"] = "string"
if t.tz is True:
schema["format"] = "date-time"
elif isinstance(t, mi.TimeType):
schema["type"] = "string"
if t.tz is True:
schema["format"] = "time"
elif t.tz is False:
schema["format"] = "partial-time"
elif isinstance(t, mi.DateType):
schema["type"] = "string"
schema["format"] = "date"
elif isinstance(t, mi.TimeDeltaType):
schema["type"] = "string"
schema["format"] = "duration"
elif isinstance(t, mi.UUIDType):
schema["type"] = "string"
schema["format"] = "uuid"
elif isinstance(t, mi.DecimalType):
schema["type"] = "string"
schema["format"] = "decimal"
elif isinstance(t, mi.CollectionType):
schema["type"] = "array"
if not isinstance(t.item_type, mi.AnyType):
schema["items"] = self.to_schema(t.item_type)
if t.max_length is not None:
schema["maxItems"] = t.max_length
if t.min_length is not None:
schema["minItems"] = t.min_length
elif isinstance(t, mi.TupleType):
schema["type"] = "array"
schema["minItems"] = schema["maxItems"] = len(t.item_types)
if t.item_types:
schema["prefixItems"] = [self.to_schema(i) for i in t.item_types]
schema["items"] = False
elif isinstance(t, mi.DictType):
schema["type"] = "object"
# If there are restrictions on the keys, specify them as propertyNames
if isinstance(key_type := t.key_type, mi.StrType):
property_names: dict[str, Any] = {}
if key_type.min_length is not None:
property_names["minLength"] = key_type.min_length
if key_type.max_length is not None:
property_names["maxLength"] = key_type.max_length
if key_type.pattern is not None:
property_names["pattern"] = key_type.pattern
if property_names:
schema["propertyNames"] = property_names
if not isinstance(t.value_type, mi.AnyType):
schema["additionalProperties"] = self.to_schema(t.value_type)
if t.max_length is not None:
schema["maxProperties"] = t.max_length
if t.min_length is not None:
schema["minProperties"] = t.min_length
elif isinstance(t, mi.UnionType):
structs = {}
other = []
tag_field = None
for subtype in t.types:
real_type = subtype
while isinstance(real_type, mi.Metadata):
real_type = real_type.type
if isinstance(real_type, mi.StructType) and not real_type.array_like:
tag_field = real_type.tag_field
structs[real_type.tag] = real_type
else:
other.append(subtype)
options = [self.to_schema(a) for a in other]
if len(structs) >= 2:
mapping = {
k: self.ref_template.format(name=self.name_map[v.cls])
for k, v in structs.items()
}
struct_schema = {
"anyOf": [self.to_schema(v) for v in structs.values()],
"discriminator": {"propertyName": tag_field, "mapping": mapping},
}
if options:
options.append(struct_schema)
schema["anyOf"] = options
else:
schema.update(struct_schema)
elif len(structs) == 1:
_, subtype = structs.popitem()
options.append(self.to_schema(subtype))
schema["anyOf"] = options
else:
schema["anyOf"] = options
elif isinstance(t, mi.LiteralType):
schema["enum"] = sorted(t.values)
elif isinstance(t, mi.EnumType):
schema.setdefault("title", t.cls.__name__)
if doc := _get_doc(t):
schema.setdefault("description", doc)
schema["enum"] = sorted(e.value for e in t.cls)
elif isinstance(t, mi.StructType):
schema.setdefault("title", _get_class_name(t.cls))
if doc := _get_doc(t):
schema.setdefault("description", doc)
required = []
names = []
fields = []
if t.tag_field is not None:
required.append(t.tag_field)
names.append(t.tag_field)
fields.append({"enum": [t.tag]})
for field in t.fields:
field_schema = self.to_schema(field.type)
if field.required:
required.append(field.encode_name)
elif field.default is not mi.NODEFAULT:
field_schema["default"] = to_builtins(field.default, str_keys=True)
elif field.default_factory in (list, dict, set, bytearray):
field_schema["default"] = field.default_factory()
names.append(field.encode_name)
fields.append(field_schema)
if t.array_like:
n_trailing_defaults = 0
for n_trailing_defaults, f in enumerate(reversed(t.fields)):
if f.required:
break
schema["type"] = "array"
schema["prefixItems"] = fields
schema["minItems"] = len(fields) - n_trailing_defaults
if t.forbid_unknown_fields:
schema["maxItems"] = len(fields)
else:
schema["type"] = "object"
schema["properties"] = dict(zip(names, fields))
schema["required"] = required
if t.forbid_unknown_fields:
schema["additionalProperties"] = False
elif isinstance(t, (mi.TypedDictType, mi.DataclassType, mi.NamedTupleType)):
schema.setdefault("title", _get_class_name(t.cls))
if doc := _get_doc(t):
schema.setdefault("description", doc)
names = []
fields = []
required = []
for field in t.fields:
field_schema = self.to_schema(field.type)
if field.required:
required.append(field.encode_name)
elif field.default is not mi.NODEFAULT:
field_schema["default"] = to_builtins(field.default, str_keys=True)
names.append(field.encode_name)
fields.append(field_schema)
if isinstance(t, mi.NamedTupleType):
schema["type"] = "array"
schema["prefixItems"] = fields
schema["minItems"] = len(required)
schema["maxItems"] = len(fields)
else:
schema["type"] = "object"
schema["properties"] = dict(zip(names, fields))
schema["required"] = required
elif isinstance(t, mi.ExtType):
raise TypeError("json-schema doesn't support msgpack Ext types")
elif isinstance(t, mi.CustomType):
if self.schema_hook:
try:
schema = mi._merge_json(self.schema_hook(t.cls), schema)
except NotImplementedError:
pass
if not schema:
raise TypeError(
"Generating JSON schema for custom types requires either:\n"
"- specifying a `schema_hook`\n"
"- annotating the type with `Meta(extra_json_schema=...)`\n"
"\n"
f"type {t.cls!r} is not supported"
)
else:
# This should be unreachable
raise TypeError(f"json-schema doesn't support type {t!r}")
return schema
|