1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/* This file implements the core float parsing routines used in msgspec.
*
* It contains an implementation of the Eisel-Lemire algorithm, as described in
* https://nigeltao.github.io/blog/2020/eisel-lemire.html. Much of the
* implementation is based on the one available in Wuffs
* (https://github.com/google/wuffs/blob/c104ae296c3557f946e4bd5ee8b85511f12c141c/internal/cgen/base/floatconv-submodule-code.c#L989).
*
* It also contains a fallback implementation using a High Precision Double
* (HPD). This method is based on the following blogpost by Nigel Tao (
* https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html), as well
* as the implementation in Wuffs
* (https://github.com/google/wuffs/blob/c104ae296c3557f946e4bd5ee8b85511f12c141c/internal/cgen/base/floatconv-submodule-code.c#L1307-L1308).
*
* The Wuffs license is copied below:
*
* """ Copyright 2020 The Wuffs Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy
* of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License. """
*
* */
#ifndef MS_ATOF_H
#define MS_ATOF_H
#include <stdint.h>
#include <math.h>
#if defined(_MSC_VER)
#include <intrin.h>
#endif
#include "atof_consts.h"
typedef struct ms_uint128 {
uint64_t lo;
uint64_t hi;
} ms_uint128;
static inline ms_uint128
ms_mulu64(uint64_t x, uint64_t y) {
#if defined(__SIZEOF_INT128__)
ms_uint128 out;
__uint128_t z = ((__uint128_t)x) * ((__uint128_t)y);
out.lo = (uint64_t)z;
out.hi = (uint64_t)(z >> 64);
return out;
#else
ms_uint128 out;
uint64_t x0 = x & 0xFFFFFFFF;
uint64_t x1 = x >> 32;
uint64_t y0 = y & 0xFFFFFFFF;
uint64_t y1 = y >> 32;
uint64_t w0 = x0 * y0;
uint64_t t = (x1 * y0) + (w0 >> 32);
uint64_t w1 = t & 0xFFFFFFFF;
uint64_t w2 = t >> 32;
w1 += x0 * y1;
out.lo = x * y;
out.hi = (x1 * y1) + w2 + (w1 >> 32);
return out;
#endif
}
static inline uint32_t
ms_clzll(uint64_t x) {
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64) || defined(_M_IA64))
uint32_t index = 0;
_BitScanReverse64(&index, x);
return (int)(63 - index);
#elif defined(__GNUC__)
return (uint32_t)__builtin_clzll(x);
#else
uint32_t out;
if ((x >> 32) == 0) {
out |= 32;
x <<= 32;
}
if ((x >> 48) == 0) {
out |= 16;
x <<= 16;
}
if ((x >> 56) == 0) {
out |= 8;
x <<= 8;
}
if ((x >> 60) == 0) {
out |= 4;
x <<= 4;
}
if ((x >> 62) == 0) {
out |= 2;
x <<= 2;
}
if ((x >> 63) == 0) {
out |= 1;
x <<= 1;
}
return out;
#endif
}
static inline int64_t
eisel_lemire(uint64_t man, int32_t exp) {
/* The short comment headers below correspond to section titles in Nigel
* Tao's blogpost. See
* https://nigeltao.github.io/blog/2020/eisel-lemire.html for a more
* in-depth description of the algorithm */
/* Normalization */
const uint64_t* po10 = ms_atof_powers_of_10[exp + 307];
uint32_t clz = ms_clzll(man);
man <<= clz;
uint64_t ret_exp2 = ((uint64_t)(((217706 * exp) >> 16) + 1087)) - ((uint64_t)clz);
/* Multiplication */
ms_uint128 x = ms_mulu64(man, po10[1]);
uint64_t x_hi = x.hi;
uint64_t x_lo = x.lo;
/* Apply a wider Approximation if needed */
if (((x_hi & 0x1FF) == 0x1FF) && ((x_lo + man) < man)) {
ms_uint128 y = ms_mulu64(man, po10[0]);
uint64_t y_hi = y.hi;
uint64_t y_lo = y.lo;
uint64_t merged_hi = x_hi;
uint64_t merged_lo = x_lo + y_hi;
if (merged_lo < x_lo) {
merged_hi++;
}
/* If the result is still ambiguous at this approximation, abort */
if (((merged_hi & 0x1FF) == 0x1FF) && ((merged_lo + 1) == 0) && (y_lo + man < man)) {
return -1;
}
x_hi = merged_hi;
x_lo = merged_lo;
}
/* Shift to 54 bits */
uint64_t msb = x_hi >> 63;
uint64_t ret_mantissa = x_hi >> (msb + 9);
ret_exp2 -= 1 ^ msb;
/* Check for a half-way ambiguity, and abort if present */
if ((x_lo == 0) && ((x_hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) {
return -1;
}
/* From 54 to 53 bits */
ret_mantissa += ret_mantissa & 1;
ret_mantissa >>= 1;
if ((ret_mantissa >> 53) > 0) {
ret_mantissa >>= 1;
ret_exp2++;
}
/* Construct final output */
ret_mantissa &= 0x000FFFFFFFFFFFFF;
return ((int64_t)(ret_mantissa | (ret_exp2 << 52)));
}
/* Fallback parsing method using a High Precision Double (HPD) */
#define MS_HPD_MAX_DIGITS 800
#define MS_HPD_DP_RANGE 2047
#define MS_HPD_MAX_SHIFT 60
typedef struct ms_hpd
{
uint32_t num_digits;
int32_t decimal_point;
bool negative;
bool truncated;
uint8_t digits[800];
} ms_hpd;
static inline void
ms_hpd_trim(ms_hpd *dec) {
while ((dec->num_digits > 0) && (dec->digits[dec->num_digits - 1] == 0)) {
dec->num_digits--;
}
if (dec->num_digits == 0) {
dec->decimal_point = 0;
}
}
static uint32_t
ms_hpd_lshift_num_new_digits(ms_hpd *hpd, uint32_t shift) {
shift &= 63;
uint32_t x_a = ms_atof_left_shift[shift];
uint32_t x_b = ms_atof_left_shift[shift + 1];
uint32_t num_new_digits = x_a >> 11;
uint32_t pow5_a = 0x7FF & x_a;
uint32_t pow5_b = 0x7FF & x_b;
const uint8_t* pow5 = &ms_atof_powers_of_5[pow5_a];
uint32_t i = 0;
uint32_t n = pow5_b - pow5_a;
for (; i < n; i++) {
if (i >= hpd->num_digits) {
return num_new_digits - 1;
} else if (hpd->digits[i] == pow5[i]) {
continue;
} else if (hpd->digits[i] < pow5[i]) {
return num_new_digits - 1;
} else {
return num_new_digits;
}
}
return num_new_digits;
}
static uint64_t
ms_hpd_rounded_integer(ms_hpd *hpd) {
if ((hpd->num_digits == 0) || (hpd->decimal_point < 0)) {
return 0;
} else if (hpd->decimal_point > 18) {
return UINT64_MAX;
}
uint32_t dp = (uint32_t)(hpd->decimal_point);
uint64_t n = 0;
uint32_t i = 0;
for (; i < dp; i++) {
n = (10 * n) + ((i < hpd->num_digits) ? hpd->digits[i] : 0);
}
bool round_up = false;
if (dp < hpd->num_digits) {
round_up = hpd->digits[dp] >= 5;
if ((hpd->digits[dp] == 5) && (dp + 1 == hpd->num_digits)) {
round_up = hpd->truncated || ((dp > 0) && (1 & hpd->digits[dp - 1]));
}
}
if (round_up) {
n++;
}
return n;
}
static void
ms_hpd_small_lshift(ms_hpd *hpd, uint32_t shift) {
if (hpd->num_digits == 0) {
return;
}
uint32_t num_new_digits = ms_hpd_lshift_num_new_digits(hpd, shift);
uint32_t rx = hpd->num_digits - 1; // Read index.
uint32_t wx = hpd->num_digits - 1 + num_new_digits; // Write index.
uint64_t n = 0;
while (((int32_t)rx) >= 0) {
n += ((uint64_t)(hpd->digits[rx])) << shift;
uint64_t quo = n / 10;
uint64_t rem = n - (10 * quo);
if (wx < MS_HPD_MAX_DIGITS) {
hpd->digits[wx] = (uint8_t)rem;
} else if (rem > 0) {
hpd->truncated = true;
}
n = quo;
wx--;
rx--;
}
while (n > 0) {
uint64_t quo = n / 10;
uint64_t rem = n - (10 * quo);
if (wx < MS_HPD_MAX_DIGITS) {
hpd->digits[wx] = (uint8_t)rem;
} else if (rem > 0) {
hpd->truncated = true;
}
n = quo;
wx--;
}
hpd->num_digits += num_new_digits;
if (hpd->num_digits > MS_HPD_MAX_DIGITS) {
hpd->num_digits = MS_HPD_MAX_DIGITS;
}
hpd->decimal_point += (int32_t)num_new_digits;
ms_hpd_trim(hpd);
}
static void
ms_hpd_small_rshift(ms_hpd *hpd, uint32_t shift) {
uint32_t rx = 0;
uint32_t wx = 0;
uint64_t n = 0;
while ((n >> shift) == 0) {
if (rx < hpd->num_digits) {
n = (10 * n) + hpd->digits[rx++];
} else if (n == 0) {
return;
} else {
while ((n >> shift) == 0) {
n = 10 * n;
rx++;
}
break;
}
}
hpd->decimal_point -= ((int32_t)(rx - 1));
if (hpd->decimal_point < -MS_HPD_DP_RANGE) {
hpd->num_digits = 0;
hpd->decimal_point = 0;
hpd->truncated = false;
return;
}
uint64_t mask = (((uint64_t)(1)) << shift) - 1;
while (rx < hpd->num_digits) {
uint8_t new_digit = ((uint8_t)(n >> shift));
n = (10 * (n & mask)) + hpd->digits[rx++];
hpd->digits[wx++] = new_digit;
}
while (n > 0) {
uint8_t new_digit = ((uint8_t)(n >> shift));
n = 10 * (n & mask);
if (wx < MS_HPD_MAX_DIGITS) {
hpd->digits[wx++] = new_digit;
} else if (new_digit > 0) {
hpd->truncated = true;
}
}
hpd->num_digits = wx;
ms_hpd_trim(hpd);
}
static double
ms_hpd_to_double(ms_hpd *hpd) {
static const uint32_t num_powers = 19;
static const uint8_t powers[19] = {
0, 3, 6, 9, 13, 16, 19, 23, 26, 29,
33, 36, 39, 43, 46, 49, 53, 56, 59,
};
if ((hpd->num_digits == 0) || (hpd->decimal_point < -326)) {
goto zero;
} else if (hpd->decimal_point > 310) {
goto infinity;
}
const int32_t f64_bias = -1023;
int32_t exp2 = 0;
while (hpd->decimal_point > 0) {
uint32_t n = (uint32_t)(+hpd->decimal_point);
uint32_t shift = (n < num_powers) ? powers[n] : MS_HPD_MAX_SHIFT;
ms_hpd_small_rshift(hpd, shift);
if (hpd->decimal_point < -MS_HPD_DP_RANGE) {
goto zero;
}
exp2 += (int32_t)shift;
}
while (hpd->decimal_point <= 0) {
uint32_t shift;
if (hpd->decimal_point == 0) {
if (hpd->digits[0] >= 5) {
break;
}
shift = (hpd->digits[0] < 2) ? 2 : 1;
} else {
uint32_t n = (uint32_t)(-hpd->decimal_point);
shift = (n < num_powers) ? powers[n] : MS_HPD_MAX_SHIFT;
}
ms_hpd_small_lshift(hpd, shift);
if (hpd->decimal_point > +MS_HPD_DP_RANGE) {
goto infinity;
}
exp2 -= (int32_t)shift;
}
exp2--;
while ((f64_bias + 1) > exp2) {
uint32_t n = (uint32_t)((f64_bias + 1) - exp2);
if (n > MS_HPD_MAX_SHIFT) {
n = MS_HPD_MAX_SHIFT;
}
ms_hpd_small_rshift(hpd, n);
exp2 += (int32_t)n;
}
if ((exp2 - f64_bias) >= 0x07FF) {
goto infinity;
}
ms_hpd_small_lshift(hpd, 53);
uint64_t man2 = ms_hpd_rounded_integer(hpd);
if ((man2 >> 53) != 0) {
man2 >>= 1;
exp2++;
if ((exp2 - f64_bias) >= 0x07FF) {
goto infinity;
}
}
if ((man2 >> 52) == 0) {
exp2 = f64_bias;
}
uint64_t exp2_bits = (uint64_t)((exp2 - f64_bias) & 0x07FF);
uint64_t bits = (
(man2 & 0x000FFFFFFFFFFFFF) |
(exp2_bits << 52) |
(hpd->negative ? 0x8000000000000000 : 0)
);
double ret;
memcpy(&ret, &bits, sizeof(double));
return ret;
zero:
return hpd->negative ? -0.0 : 0.0;
infinity:
return hpd->negative ? -INFINITY : INFINITY;
}
#endif
|