File: resolution.rst

package info (click to toggle)
python-multipledispatch 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 272 kB
  • sloc: python: 1,116; makefile: 141
file content (239 lines) | stat: -rw-r--r-- 5,319 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
Method Resolution
=================

Multiple dispatch selects the function from the types of the inputs.

.. code::

    @dispatch(int)
    def f(x):           # increment integers
        return x + 1

    @dispatch(float)
    def f(x):           # decrement floats
        return x - 1

.. code::

    >>> f(1)            # 1 is an int, so increment
    2
    >>> f(1.0)          # 1.0 is a float, so decrement
    0.0

Union Types
-----------

Similarly to the builtin ``isinstance`` operation you specify multiple valid
types with a tuple.

.. code::

    @dispatch((list, tuple))
    def f(x):
        """ Apply ``f`` to each element in a list or tuple """
        return [f(y) for y in x]

.. code::

    >>> f([1, 2, 3])
    [2, 3, 4]

    >>> f((1, 2, 3))
    [2, 3, 4]

Abstract Types
--------------

You can also use abstract classes like ``Iterable`` and ``Number`` in
place of union types like ``(list, tuple)`` or ``(int, float)``.

.. code::

    from collections import Iterable

    # @dispatch((list, tuple))
    @dispatch(Iterable)
    def f(x):
        """ Apply ``f`` to each element in an Iterable """
        return [f(y) for y in x]

Selecting Specific Implementations
----------------------------------

If multiple valid implementations exist then we use the most specific
one. In the following example we build a function to flatten nested
iterables.

.. code::

    @dispatch(Iterable)
    def flatten(L):
        return sum([flatten(x) for x in L], [])

    @dispatch(object)
    def flatten(x):
        return [x]

.. code::

    >>> flatten([1, 2, 3])
    [1, 2, 3]

    >>> flatten([1, [2], 3])
    [1, 2, 3]

    >>> flatten([1, 2, (3, 4), [[5]], [(6, 7), (8, 9)]])
    [1, 2, 3, 4, 5, 6, 7, 8, 9]

Because strings are iterable they too will be flattened

.. code::

    >>> flatten([1, 'hello', 3])
    [1, 'h', 'e', 'l', 'l', 'o', 3]

We avoid this by specializing ``flatten`` to ``str``. Because ``str`` is
more specific than ``Iterable`` this function takes precedence for
strings.

.. code::

    @dispatch(str)
    def flatten(s):
        return s

.. code::

    >>> flatten([1, 'hello', 3])
    [1, 'hello', 3]

The ``multipledispatch`` project depends on Python's ``issubclass``
mechanism to determine which types are more specific than others.

Multiple Inputs
---------------

All of these rules apply when we introduce multiple inputs.

.. code::

    @dispatch(object, object)
    def f(x, y):
        return x + y

    @dispatch(object, float)
    def f(x, y):
        """ Square the right hand side if it is a float """
        return x + y**2

.. code::

    >>> f(1, 10)
    11

    >>> f(1.0, 10.0)
    101.0


Variadic Dispatch
-----------------

``multipledispatch`` supports variadic dispatch (including support for union
types) as the last set of arguments passed into the function.

Variadic signatures are specified with a single-element list containing the
type of the arguments the function takes.

For example, here's a function that takes a ``float`` followed by any number
(including 0) of either ``int`` or ``str``:

.. code::

   @dispatch(float, [(int, str)])
   def float_then_int_or_str(x, *args):
       return x + sum(map(int, args))

.. code::

   >>> f(1.0, '2', '3', 4)
   10.0

   >>> f(2.0, '4', 6, 8)
   20.0

Ambiguities
-----------

However ambiguities arise when different implementations of a function
are equally valid

.. code::

    @dispatch(float, object)
    def f(x, y):
        """ Square left hand side if it is a float """
        return x**2 + y

.. code::

    >>> f(2.0, 10.0)
    ?

Which result do we expect, ``2.0**2 + 10.0`` or ``2.0 + 10.0**2``? The
types of the inputs satisfy three different implementations, two of
which have equal validity

::

    input types:    float, float
    Option 1:       object, object
    Option 2:       object, float
    Option 3:       float, object

Option 1 is strictly less specific than either options 2 or 3 so we
discard it. Options 2 and 3 however are equally specific and so it is
unclear which to use.

To resolve issues like this ``multipledispatch`` inspects the type
signatures given to it and searches for ambiguities. It then raises a
warning like the following:

::

    multipledispatch/dispatcher.py:74: AmbiguityWarning:
    Ambiguities exist in dispatched function f

    The following signatures may result in ambiguous behavior:
        [object, float], [float, object]


    Consider making the following additions:

    @dispatch(float, float)
    def f(...)

This warning occurs when you write the function and guides you to create
an implementation to break the ambiguity. In this case, a function with
signature ``(float, float)`` is more specific than either options 2 or 3
and so resolves the issue. To avoid this warning you should implement
this new function *before* the others.

.. code::

    @dispatch(float, float)
    def f(x, y):
        ...

    @dispatch(float, object)
    def f(x, y):
        ...

    @dispatch(object, float)
    def f(x, y):
        ...

If you do not resolve ambiguities by creating more specific functions
then one of the competing functions will be selected pseudo-randomly.
By default the selection is dependent on hash, so it will be consistent
during the interpreter session, but it might change from session to
session.