File: compare_correlation_methods.py

package info (click to toggle)
python-multipletau 0.1.7%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 400 kB
  • ctags: 147
  • sloc: python: 1,368; makefile: 14
file content (134 lines) | stat: -rw-r--r-- 4,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/python
# -*- coding: utf-8 -*-
""" 
Comparison of correlation methods
---------------------------------
Comparison between the :py:mod:`multipletau` correlation methods
(:py:func:`multipletau.autocorrelate`, :py:func:`multipletau.correlate`) and :py:func:`numpy.correlate`.

.. image:: ../examples/compare_correlation_methods.png
   :align:   center

Download the 
:download:`full example <../examples/compare_correlation_methods.py>`.    
"""
from __future__ import print_function

import numpy as np
import os
from os.path import abspath, dirname, join
import sys
import time

sys.path.insert(0, dirname(dirname(abspath(__file__))))

from noise_generator import noise_exponential, noise_cross_exponential
from multipletau import autocorrelate, correlate, correlate_numpy


def compare_corr():
    ## Starting parameters
    N = np.int(np.pi*1e3)
    countrate = 250. * 1e-3 # in Hz
    taudiff = 55. # in us
    deltat = 2e-6 # time discretization [s]
    normalize = True

    # time factor
    taudiff *= deltat

    if N < 1e5:
        do_np_corr = True
    else:
        do_np_corr = False

    ## Autocorrelation
    print("Creating noise for autocorrelation")
    data = noise_exponential(N, taudiff, deltat=deltat)
    data -= np.average(data)
    if normalize:
        data += countrate
    # multipletau
    print("Performing autocorrelation (multipletau).")
    G = autocorrelate(data, deltat=deltat, normalize=normalize)
    # numpy.correlate for comparison
    if do_np_corr:
        print("Performing autocorrelation (numpy).")
        Gd = correlate_numpy(data, data, deltat=deltat,
                             normalize=normalize)
    else:
        Gd = G
    
    ## Cross-correlation
    print("Creating noise for cross-correlation")
    a, v = noise_cross_exponential(N, taudiff, deltat=deltat)
    a -= np.average(a)
    v -= np.average(v)
    if normalize:
        a += countrate
        v += countrate
    Gccforw = correlate(a, v, deltat=deltat, normalize=normalize) # forward
    Gccback = correlate(v, a, deltat=deltat, normalize=normalize) # backward
    if do_np_corr:
        print("Performing cross-correlation (numpy).")
        Gdccforw = correlate_numpy(a, v, deltat=deltat, normalize=normalize)
    
    ## Calculate the model curve for cross-correlation
    xcc = Gd[:,0]
    ampcc = np.correlate(a-np.average(a), v-np.average(v), mode="valid")
    if normalize:
        ampcc /= len(a) * countrate**2
    ycc = ampcc*np.exp(-xcc/taudiff)

    ## Calculate the model curve for autocorrelation
    x = Gd[:,0]
    amp = np.correlate(data-np.average(data), data-np.average(data),
                       mode="valid")
    if normalize:
        amp /= len(data) * countrate**2
    y = amp*np.exp(-x/taudiff)


    ## Plotting
    # AC
    fig = plt.figure()
    fig.canvas.set_window_title('testing multipletau')
    ax = fig.add_subplot(2,1,1)
    ax.set_xscale('log')
    if do_np_corr:
        plt.plot(Gd[:,0], Gd[:,1] , "-", color="gray", label="correlate (numpy)")
    plt.plot(x, y, "g-", label="input model")
    plt.plot(G[:,0], G[:,1], "-",  color="#B60000", label="autocorrelate")
    plt.xlabel("lag channel")
    plt.ylabel("autocorrelation")
    plt.legend(loc=0, fontsize='small')
    plt.ylim( -amp*.2, amp*1.2)
    plt.xlim( Gd[0,0], Gd[-1,0])

    # CC
    ax = fig.add_subplot(2,1,2)
    ax.set_xscale('log')
    if do_np_corr:
        plt.plot(Gdccforw[:,0], Gdccforw[:,1] , "-", color="gray", label="forward (numpy)")
    plt.plot(xcc, ycc, "g-", label="input model")
    plt.plot(Gccforw[:,0], Gccforw[:,1], "-", color="#B60000", label="forward")
    plt.plot(Gccback[:,0], Gccback[:,1], "-", color="#5D00B6", label="backward")
    plt.xlabel("lag channel")
    plt.ylabel("cross-correlation")
    plt.legend(loc=0, fontsize='small')
    plt.ylim( -ampcc*.2, ampcc*1.2)
    plt.xlim( Gd[0,0], Gd[-1,0])
    plt.tight_layout()

    savename = __file__[:-3]+".png"
    if os.path.exists(savename):
        savename = __file__[:-3]+time.strftime("_%Y-%m-%d_%H-%M-%S.png")

    plt.savefig(savename)
    print("Saved output to", savename)


if __name__ == '__main__':
    # move mpl import to main so travis automated doc build does not complain
    from matplotlib import pylab as plt
    compare_corr()