File: test_ref_numpy.py

package info (click to toggle)
python-multipletau 0.1.7%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 400 kB
  • ctags: 147
  • sloc: python: 1,368; makefile: 14
file content (179 lines) | stat: -rw-r--r-- 5,970 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Compare to numpy data.
"""
import numpy as np
from os.path import abspath, dirname, join
import sys

sys.path.insert(0, dirname(dirname(abspath(__file__))))

import multipletau

from test_correlate import get_sample_arrays_cplx


def test_corresponds_ac():
    myframe = sys._getframe()
    myname = myframe.f_code.co_name
    print("running ", myname)
    
    a = np.concatenate(get_sample_arrays_cplx()).real
    m=16

    restau = multipletau.autocorrelate(a=1*a,
                                       m=m,
                                       copy=True,
                                       normalize=True,
                                       dtype=np.float_)

    reslin = multipletau.correlate_numpy(a=1*a,
                                         v=1*a,
                                         copy=True,
                                         normalize=True,
                                         dtype=np.float_)

    idx = np.array(restau[:,0].real, dtype=int)[:m]

    assert np.allclose(reslin[idx, 1], restau[:m,1])


def test_corresponds_ac_first_loop():
    """
    numpy correlation:
    G_m = sum_i(a_i*a_{i+m})
    
    multipletau correlation 2nd order:
    b_j = (a_{2i} + a_{2i+1} / 2)
    G_m = sum_j(b_j*b_{j+1})
        = 1/4*sum_i(a_{2i}   * a_{2i+m}   +
                    a_{2i}   * a_{2i+m+1} +
                    a_{2i+1} * a_{2i+m}   +   
                    a_{2i+1} * a_{2i+m+1}
                    )
    
    The values after the first m+1 lag times in the multipletau
    correlation differ from the normal correlation, because the
    traces are averaged over two consecutive items, effectively
    halving the size of the trace. The multiple-tau correlation
    can be compared to the regular correlation by using an even
    sized sequence (here 222) in which the elements 2i and 2i+1
    are equal, as is done in this test.
    """
    myframe = sys._getframe()
    myname = myframe.f_code.co_name
    print("running ", myname)
    
    a = [ arr / np.average(arr) for arr in get_sample_arrays_cplx() ]
    a = np.concatenate(a)[:222]
    # two consecutive elements are the same, so the multiple-tau method
    # corresponds to the numpy correlation for the first loop.
    a[::2] = a[1::2]
    
    for m in [2,4,6,8,10,12,14,16]:
        restau = multipletau.correlate(a=a,
                                       v=a.imag+1j*a.real,
                                       m=m,
                                       copy=True,
                                       normalize=False,
                                       dtype=np.complex_)
        
        reslin = multipletau.correlate_numpy(a=a,
                                             v=a.imag+1j*a.real,
                                             copy=True,
                                             normalize=False,
                                             dtype=np.complex_)
        
        idtau = np.where(restau[:,0]==m+2)[0][0]
        tau3 = restau[idtau, 1] #m+1 initial bins
    
        idref = np.where(reslin[:,0]==m+2)[0][0]
        tau3ref = reslin[idref, 1]
        
        assert np.allclose(tau3, tau3ref)


def test_corresponds_ac_nonormalize():
    myframe = sys._getframe()
    myname = myframe.f_code.co_name
    print("running ", myname)
    
    a = np.concatenate(get_sample_arrays_cplx()).real
    m=16

    restau = multipletau.autocorrelate(a=1*a,
                                       m=m,
                                       copy=True,
                                       normalize=False,
                                       dtype=np.float_)

    reslin = multipletau.correlate_numpy(a=1*a,
                                         v=1*a,
                                         copy=True,
                                         normalize=False,
                                         dtype=np.float_)

    idx = np.array(restau[:,0].real, dtype=int)[:m+1]

    assert np.allclose(reslin[idx, 1], restau[:m+1,1])


def test_corresponds_cc():
    myframe = sys._getframe()
    myname = myframe.f_code.co_name
    print("running ", myname)
    
    a = np.concatenate(get_sample_arrays_cplx())
    m=16

    restau = multipletau.correlate(a=a,
                                   v=a.imag+1j*a.real,
                                   m=m,
                                   copy=True,
                                   normalize=True,
                                   dtype=np.complex_)

    reslin = multipletau.correlate_numpy(a=a,
                                         v=a.imag+1j*a.real,
                                         copy=True,
                                         normalize=True,
                                         dtype=np.complex_)

    idx = np.array(restau[:,0].real, dtype=int)[:m+1]

    assert np.allclose(reslin[idx, 1], restau[:m+1,1])


def test_corresponds_cc_nonormalize():
    myframe = sys._getframe()
    myname = myframe.f_code.co_name
    print("running ", myname)
    
    a = np.concatenate(get_sample_arrays_cplx())
    m=16

    restau = multipletau.correlate(a=a,
                                   v=a.imag+1j*a.real,
                                   m=m,
                                   copy=True,
                                   normalize=False,
                                   dtype=np.complex_)

    reslin = multipletau.correlate_numpy(a=a,
                                         v=a.imag+1j*a.real,
                                         copy=True,
                                         normalize=False,
                                         dtype=np.complex_)

    idx = np.array(restau[:,0].real, dtype=int)[:m+1]

    assert np.allclose(reslin[idx, 1], restau[:m+1,1])
    

if __name__ == "__main__":
    # Run all tests
    loc = locals()
    for key in list(loc.keys()):
        if key.startswith("test_") and hasattr(loc[key], "__call__"):
            loc[key]()