1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Test correlation-autocorrelation identity"""
from __future__ import division, print_function
import numpy as np
import multipletau
from test_autocorrelate import get_sample_arrays
def test_ac():
arrs = get_sample_arrays()
try:
multipletau.autocorrelate(a=arrs[0],
copy=2)
except ValueError as e:
assert "`copy` must be boolean!" in e.args
else:
assert False
try:
multipletau.autocorrelate(a=arrs[0],
ret_sum=2)
except ValueError as e:
assert "`ret_sum` must be boolean!" in e.args
else:
assert False
try:
multipletau.autocorrelate(a=arrs[0],
normalize=2)
except ValueError as e:
assert "`normalize` must be boolean!" in e.args
else:
assert False
try:
multipletau.autocorrelate(a=arrs[0],
compress="peter")
except ValueError as e:
assert "Invalid value for `compress`!" in e.args[0]
else:
assert False
try:
multipletau.autocorrelate(a=arrs[0],
normalize=True,
ret_sum=True)
except ValueError as e:
assert "'normalize' and 'ret_sum' must not both be True!" in e.args
else:
assert False
def test_ac_trace0():
arrs = get_sample_arrays()
try:
multipletau.autocorrelate(a=arrs[0] - np.mean(arrs[0]),
normalize=True)
except ValueError as e:
assert "Cannot normalize: Average of `a` is zero!" in e.args
else:
assert False
def test_ac_tracesize():
arrs = get_sample_arrays()
try:
multipletau.autocorrelate(a=arrs[0][:31],
m=16)
except ValueError as e:
assert '`len(a)` must be >= `2m`!' in e.args
else:
assert False
def test_cc():
arrs = get_sample_arrays()
try:
multipletau.correlate(a=arrs[0], v=arrs[0],
copy=2)
except ValueError as e:
assert "`copy` must be boolean!" in e.args
else:
assert False
try:
multipletau.correlate(a=arrs[0], v=arrs[0],
ret_sum=2)
except ValueError as e:
assert "`ret_sum` must be boolean!" in e.args
else:
assert False
try:
multipletau.correlate(a=arrs[0], v=arrs[0],
normalize=2)
except ValueError as e:
assert "`normalize` must be boolean!" in e.args
else:
assert False
try:
multipletau.correlate(a=arrs[0], v=arrs[0],
compress="peter")
except ValueError as e:
assert "Invalid value for `compress`!" in e.args[0]
else:
assert False
try:
multipletau.correlate(a=arrs[0], v=arrs[0],
normalize=True,
ret_sum=True)
except ValueError as e:
assert "'normalize' and 'ret_sum' must not both be True!" in e.args
else:
assert False
def test_cc_trace0():
arrs = get_sample_arrays()
try:
multipletau.correlate(a=arrs[0] - np.mean(arrs[0]),
v=arrs[0],
normalize=True)
except ValueError as e:
assert "Cannot normalize: Average of `a` is zero!" in e.args
else:
assert False
try:
multipletau.correlate(a=arrs[0],
v=arrs[0] - np.mean(arrs[0]),
normalize=True)
except ValueError as e:
assert "Cannot normalize: Average of `v` is zero!" in e.args
else:
assert False
def test_cc_tracesize():
arrs = get_sample_arrays()
try:
multipletau.correlate(a=arrs[0][:31],
v=arrs[0][:31],
m=16)
except ValueError as e:
assert '`len(a)` must be >= `2m`!' in e.args
else:
assert False
def test_cc_samesize():
arrs = get_sample_arrays()
try:
multipletau.correlate(a=arrs[0],
v=arrs[1],
normalize=True)
except ValueError as e:
assert "`a` and `v` must have same length!" in e.args
else:
assert False
def test_numpy_cc_trace0():
arrs = get_sample_arrays()
try:
multipletau.correlate_numpy(a=arrs[0] - np.mean(arrs[0]),
v=arrs[0],
normalize=True)
except ValueError as e:
assert "Cannot normalize: Average of `a` is zero!" in e.args
else:
assert False
try:
multipletau.correlate_numpy(a=arrs[0],
v=arrs[0] - np.mean(arrs[0]),
normalize=True)
except ValueError as e:
assert "Cannot normalize: Average of `v` is zero!" in e.args
else:
assert False
def test_numpy_cc_samesize():
arrs = get_sample_arrays()
try:
multipletau.correlate_numpy(a=arrs[0],
v=arrs[1],
normalize=True)
except ValueError as e:
assert "`a` and `v` must have same length!" in e.args
else:
assert False
if __name__ == "__main__":
# Run all tests
loc = locals()
for key in list(loc.keys()):
if key.startswith("test_") and hasattr(loc[key], "__call__"):
loc[key]()
|