File: test_sanity.py

package info (click to toggle)
python-multipletau 0.3.3%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 380 kB
  • sloc: python: 1,557; makefile: 15
file content (208 lines) | stat: -rw-r--r-- 5,661 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Test correlation-autocorrelation identity"""
from __future__ import division, print_function

import numpy as np

import multipletau

from test_autocorrelate import get_sample_arrays


def test_ac():
    arrs = get_sample_arrays()

    try:
        multipletau.autocorrelate(a=arrs[0],
                                  copy=2)
    except ValueError as e:
        assert "`copy` must be boolean!" in e.args
    else:
        assert False

    try:
        multipletau.autocorrelate(a=arrs[0],
                                  ret_sum=2)
    except ValueError as e:
        assert "`ret_sum` must be boolean!" in e.args
    else:
        assert False

    try:
        multipletau.autocorrelate(a=arrs[0],
                                  normalize=2)
    except ValueError as e:
        assert "`normalize` must be boolean!" in e.args
    else:
        assert False

    try:
        multipletau.autocorrelate(a=arrs[0],
                                  compress="peter")
    except ValueError as e:
        assert "Invalid value for `compress`!" in e.args[0]
    else:
        assert False

    try:
        multipletau.autocorrelate(a=arrs[0],
                                  normalize=True,
                                  ret_sum=True)
    except ValueError as e:
        assert "'normalize' and 'ret_sum' must not both be True!" in e.args
    else:
        assert False


def test_ac_trace0():
    arrs = get_sample_arrays()
    try:
        multipletau.autocorrelate(a=arrs[0] - np.mean(arrs[0]),
                                  normalize=True)
    except ValueError as e:
        assert "Cannot normalize: Average of `a` is zero!" in e.args
    else:
        assert False


def test_ac_tracesize():
    arrs = get_sample_arrays()
    try:
        multipletau.autocorrelate(a=arrs[0][:31],
                                  m=16)
    except ValueError as e:
        assert '`len(a)` must be >= `2m`!' in e.args
    else:
        assert False


def test_cc():
    arrs = get_sample_arrays()

    try:
        multipletau.correlate(a=arrs[0], v=arrs[0],
                              copy=2)
    except ValueError as e:
        assert "`copy` must be boolean!" in e.args
    else:
        assert False

    try:
        multipletau.correlate(a=arrs[0], v=arrs[0],
                              ret_sum=2)
    except ValueError as e:
        assert "`ret_sum` must be boolean!" in e.args
    else:
        assert False

    try:
        multipletau.correlate(a=arrs[0], v=arrs[0],
                              normalize=2)
    except ValueError as e:
        assert "`normalize` must be boolean!" in e.args
    else:
        assert False

    try:
        multipletau.correlate(a=arrs[0], v=arrs[0],
                              compress="peter")
    except ValueError as e:
        assert "Invalid value for `compress`!" in e.args[0]
    else:
        assert False

    try:
        multipletau.correlate(a=arrs[0], v=arrs[0],
                              normalize=True,
                              ret_sum=True)
    except ValueError as e:
        assert "'normalize' and 'ret_sum' must not both be True!" in e.args
    else:
        assert False


def test_cc_trace0():
    arrs = get_sample_arrays()
    try:
        multipletau.correlate(a=arrs[0] - np.mean(arrs[0]),
                              v=arrs[0],
                              normalize=True)
    except ValueError as e:
        assert "Cannot normalize: Average of `a` is zero!" in e.args
    else:
        assert False

    try:
        multipletau.correlate(a=arrs[0],
                              v=arrs[0] - np.mean(arrs[0]),
                              normalize=True)
    except ValueError as e:
        assert "Cannot normalize: Average of `v` is zero!" in e.args
    else:
        assert False


def test_cc_tracesize():
    arrs = get_sample_arrays()
    try:
        multipletau.correlate(a=arrs[0][:31],
                              v=arrs[0][:31],
                              m=16)
    except ValueError as e:
        assert '`len(a)` must be >= `2m`!' in e.args
    else:
        assert False


def test_cc_samesize():
    arrs = get_sample_arrays()
    try:
        multipletau.correlate(a=arrs[0],
                              v=arrs[1],
                              normalize=True)
    except ValueError as e:
        assert "`a` and `v` must have same length!" in e.args
    else:
        assert False


def test_numpy_cc_trace0():
    arrs = get_sample_arrays()
    try:
        multipletau.correlate_numpy(a=arrs[0] - np.mean(arrs[0]),
                                    v=arrs[0],
                                    normalize=True)
    except ValueError as e:
        assert "Cannot normalize: Average of `a` is zero!" in e.args
    else:
        assert False

    try:
        multipletau.correlate_numpy(a=arrs[0],
                                    v=arrs[0] - np.mean(arrs[0]),
                                    normalize=True)
    except ValueError as e:
        assert "Cannot normalize: Average of `v` is zero!" in e.args
    else:
        assert False


def test_numpy_cc_samesize():
    arrs = get_sample_arrays()
    try:
        multipletau.correlate_numpy(a=arrs[0],
                                    v=arrs[1],
                                    normalize=True)
    except ValueError as e:
        assert "`a` and `v` must have same length!" in e.args
    else:
        assert False


if __name__ == "__main__":
    # Run all tests
    loc = locals()
    for key in list(loc.keys()):
        if key.startswith("test_") and hasattr(loc[key], "__call__"):
            loc[key]()