1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
import logging
from functools import reduce
import nanoget.utils as ut
import pandas as pd
import sys
import pysam
import re
from Bio import SeqIO
import concurrent.futures as cfutures
from itertools import repeat
def process_summary(summaryfile, **kwargs):
"""Extracting information from an albacore/guppy/dorado summary file.
Only reads which have a >0 length are returned.
The fields below may or may not exist, depending on the type of sequencing performed.
Fields 1-14 are for 1D sequencing.
Fields 1-23 for 2D sequencing.
Fields 24-27, 2-5, 22-23 for 1D^2 (1D2) sequencing
Fields 28-38 for barcoded workflows
1 filename
2 read_id
3 run_id
4 channel
5 start_time
6 duration
7 num_events
8 template_start
9 num_events_template
10 template_duration
11 num_called_template
12 sequence_length_template
13 mean_qscore_template
14 strand_score_template
15 complement_start
16 num_events_complement
17 complement_duration
18 num_called_complement
19 sequence_length_complement
20 mean_qscore_complement
21 strand_score_complement
22 sequence_length_2d
23 mean_qscore_2d
24 filename1
25 filename2
26 read_id1
27 read_id2
28 barcode_arrangement
29 barcode_score
30 barcode_full_arrangement
31 front_score
32 rear_score
33 front_begin_index
34 front_foundseq_length
35 rear_end_index
36 rear_foundseq_length
37 kit
38 variant
"""
logging.info(
f"Nanoget: Collecting metrics from summary file {summaryfile} for {kwargs['readtype']} sequencing"
)
ut.check_existance(summaryfile)
if kwargs["readtype"] == "1D":
cols = [
"channel",
"start_time",
"duration",
"sequence_length_template",
"mean_qscore_template",
]
elif kwargs["readtype"] in ["2D", "1D2"]:
cols = ["channel", "start_time", "duration", "sequence_length_2d", "mean_qscore_2d"]
if kwargs["barcoded"]:
cols.append("barcode_arrangement")
logging.info("Nanoget: Extracting metrics per barcode.")
try:
datadf = pd.read_csv(
filepath_or_buffer=summaryfile,
sep="\t",
usecols=cols,
)
except ValueError:
logging.error(
"Nanoget: did not find expected columns in summary file {}:\n {}".format(
summaryfile, ", ".join(cols)
)
)
sys.exit(
"ERROR: expected columns in summary file {} not found:\n {}".format(
summaryfile, ", ".join(cols)
)
)
if kwargs["barcoded"]:
datadf.columns = ["channelIDs", "time", "duration", "lengths", "quals", "barcode"]
else:
datadf.columns = ["channelIDs", "time", "duration", "lengths", "quals"]
logging.info("Nanoget: Finished collecting statistics from summary file {}".format(summaryfile))
return ut.reduce_memory_usage(datadf.loc[datadf["lengths"] != 0].copy())
def check_bam(bam, samtype="bam"):
"""Check if bam file is valid.
Bam file should:
- exists
- has an index (create if necessary)
- is sorted by coordinate
- has at least one mapped read
"""
ut.check_existance(bam)
samfile = pysam.AlignmentFile(bam, "rb")
if not samfile.has_index():
pysam.index(bam)
samfile = pysam.AlignmentFile(bam, "rb") # Need to reload the samfile after creating index
logging.info("Nanoget: No index for bam file could be found, created index.")
if not samfile.header["HD"]["SO"] == "coordinate":
logging.error("Nanoget: Bam file {} not sorted by coordinate!.".format(bam))
sys.exit("Please use a bam file sorted by coordinate.")
if samtype == "bam":
logging.info(
"Nanoget: Bam file {} contains {} mapped and {} unmapped reads.".format(
bam, samfile.mapped, samfile.unmapped
)
)
if samfile.mapped == 0:
logging.error("Nanoget: Bam file {} does not contain aligned reads.".format(bam))
sys.exit("FATAL: not a single read was mapped in bam file {}".format(bam))
return samfile
def process_ubam(bam, **kwargs):
"""Extracting metrics from unaligned bam format
Extracting lengths
"""
logging.info("Nanoget: Starting to collect statistics from ubam file {}.".format(bam))
samfile = pysam.AlignmentFile(bam, "rb", check_sq=False)
if not samfile.has_index():
pysam.index(bam)
# Need to reload the samfile after creating index
samfile = pysam.AlignmentFile(bam, "rb", check_sq=False)
logging.info("Nanoget: No index for bam file could be found, created index.")
datadf = (
pd.DataFrame(
data=[
(read.query_name, ut.ave_qual(read.query_qualities), read.query_length)
for read in samfile.fetch(until_eof=True)
],
columns=["readIDs", "quals", "lengths"],
)
.dropna(axis="columns", how="all")
.dropna(axis="index", how="any")
)
logging.info("Nanoget: ubam {} contains {} reads.".format(bam, datadf["lengths"].size))
return ut.reduce_memory_usage(datadf)
def process_bam(bam, **kwargs):
"""Combines metrics from bam after extraction.
Processing function: calls pool of worker functions
to extract from a bam file the following metrics:
-lengths
-aligned lengths
-qualities
-aligned qualities
-mapping qualities
-edit distances to the reference genome scaled by read length
Returned in a pandas DataFrame
"""
logging.info("Nanoget: Starting to collect statistics from bam file {}.".format(bam))
samfile = check_bam(bam)
chromosomes = samfile.references
if len(chromosomes) > 200 or kwargs["huge"]:
logging.info("Nanoget: lots of contigs (>200) or --huge, not running in separate processes")
datadf = (
pd.DataFrame(
data=extract_from_bam(bam, None, kwargs["keep_supp"]),
columns=[
"readIDs",
"quals",
"aligned_quals",
"lengths",
"aligned_lengths",
"mapQ",
"percentIdentity",
],
)
.dropna(axis="columns", how="all")
.dropna(axis="index", how="any")
)
else:
unit = chromosomes
with cfutures.ProcessPoolExecutor(max_workers=kwargs["threads"]) as executor:
datadf = (
pd.DataFrame(
data=[
res
for sublist in executor.map(
extract_from_bam, repeat(bam), unit, repeat(kwargs["keep_supp"])
)
for res in sublist
],
columns=[
"readIDs",
"quals",
"aligned_quals",
"lengths",
"aligned_lengths",
"mapQ",
"percentIdentity",
],
)
.dropna(axis="columns", how="all")
.dropna(axis="index", how="any")
)
logging.info(f"Nanoget: bam {bam} contains {datadf['lengths'].size} primary alignments.")
return ut.reduce_memory_usage(datadf)
def process_cram(cram, **kwargs):
"""Combines metrics from cram after extraction.
Processing function: calls pool of worker functions
to extract from a cram file the following metrics:
-lengths
-aligned lengths
-qualities
-aligned qualities
-mapping qualities
-edit distances to the reference genome scaled by read length
Returned in a pandas DataFrame
"""
logging.info("Nanoget: Starting to collect statistics from cram file {}.".format(cram))
samfile = check_bam(cram, samtype="cram")
chromosomes = samfile.references
if len(chromosomes) > 200:
unit = [None]
logging.info("Nanoget: lots of contigs (>100), not running in separate processes")
else:
unit = chromosomes
with cfutures.ProcessPoolExecutor(max_workers=kwargs["threads"]) as executor:
datadf = (
pd.DataFrame(
data=[
res
for sublist in executor.map(
extract_from_bam, repeat(cram), unit, repeat(kwargs["keep_supp"])
)
for res in sublist
],
columns=[
"readIDs",
"quals",
"aligned_quals",
"lengths",
"aligned_lengths",
"mapQ",
"percentIdentity",
],
)
.dropna(axis="columns", how="all")
.dropna(axis="index", how="any")
)
logging.info(f"Nanoget: cram {cram} contains {datadf['lengths'].size} primary alignments.")
return ut.reduce_memory_usage(datadf)
def extract_from_bam(bam, chromosome, keep_supplementary=True):
"""Extracts metrics from bam.
Worker function per chromosome
loop over a bam file and create list with tuples containing metrics:
-qualities
-aligned qualities
-lengths
-aligned lengths
-mapping qualities
-edit distances to the reference genome scaled by read length
"""
samfile = pysam.AlignmentFile(bam, "rb")
if keep_supplementary:
return [
(
read.query_name,
ut.ave_qual(read.query_qualities),
ut.ave_qual(read.query_alignment_qualities),
read.query_length,
read.query_alignment_length,
read.mapping_quality,
get_pID(read),
)
for read in samfile.fetch(reference=chromosome, multiple_iterators=True)
if not read.is_secondary and not read.is_unmapped
]
else:
return [
(
read.query_name,
ut.ave_qual(read.query_qualities),
ut.ave_qual(read.query_alignment_qualities),
read.query_length,
read.query_alignment_length,
read.mapping_quality,
get_pID(read),
)
for read in samfile.fetch(reference=chromosome, multiple_iterators=True)
if not read.is_secondary and not read.is_unmapped and not read.is_supplementary
]
def get_pID(read):
"""Return the percent identity of a read.
based on the NM tag if present,
if not calculate from MD tag and CIGAR string
read.query_alignment_length can be zero in the case of ultra long reads aligned with minimap2 -L
"""
match = reduce(lambda x, y: x + y[1] if y[0] in (0, 7, 8) else x, read.cigartuples, 0)
ins = reduce(lambda x, y: x + y[1] if y[0] == 1 else x, read.cigartuples, 0)
delt = reduce(lambda x, y: x + y[1] if y[0] == 2 else x, read.cigartuples, 0)
alignment_length = match + ins + delt
try:
return (1 - read.get_tag("NM") / alignment_length) * 100
except KeyError:
try:
return 100 * (
1
- (parse_MD(read.get_tag("MD")) + parse_CIGAR(read.cigartuples)) / alignment_length
)
except KeyError:
return None
except ZeroDivisionError:
return None
def parse_MD(MDlist):
"""Parse MD string to get number of mismatches and deletions."""
return sum([len(item) for item in re.split("[0-9^]", MDlist)])
def parse_CIGAR(cigartuples):
"""Count the insertions in the read using the CIGAR string."""
return sum([item[1] for item in cigartuples if item[0] == 1])
def handle_compressed_input(inputfq, file_type="fastq"):
"""Return handles from compressed files according to extension.
Check for which fastq input is presented and open a handle accordingly
Can read from compressed files (gz, bz2, bgz) or uncompressed
Relies on file extensions to recognize compression
"""
ut.check_existance(inputfq)
if inputfq.endswith((".gz", "bgz")):
import gzip
logging.info("Nanoget: Decompressing gzipped {} {}".format(file_type, inputfq))
return gzip.open(inputfq, "rt")
elif inputfq.endswith(".bz2"):
import bz2
logging.info("Nanoget: Decompressing bz2 compressed {} {}".format(file_type, inputfq))
return bz2.open(inputfq, "rt")
elif inputfq.endswith((".fastq", ".fq", "fasta", ".fa", ".fas")):
return open(inputfq, "r")
else:
logging.error("INPUT ERROR: Unrecognized file extension {}".format(inputfq))
sys.exit(
"INPUT ERROR:\nUnrecognized file extension in {}\n"
"Supported are gz, bz2, bgz, fastq, fq, fasta, fa and fas".format(inputfq)
)
def process_fasta(fasta, **kwargs):
"""Combine metrics extracted from a fasta file."""
logging.info("Nanoget: Starting to collect statistics from a fasta file.")
inputfasta = handle_compressed_input(fasta, file_type="fasta")
return ut.reduce_memory_usage(
pd.DataFrame(
data=[len(rec) for rec in SeqIO.parse(inputfasta, "fasta")], columns=["lengths"]
).dropna()
)
def process_fastq_plain(fastq, **kwargs):
"""Combine metrics extracted from a fastq file."""
logging.info("Nanoget: Starting to collect statistics from plain fastq file.")
inputfastq = handle_compressed_input(fastq)
return ut.reduce_memory_usage(
pd.DataFrame(
data=[res for res in extract_from_fastq(inputfastq) if res],
columns=["quals", "lengths"],
).dropna()
)
def extract_from_fastq(fq):
"""Extract metrics from a fastq file.
Return average quality and read length
"""
for rec in SeqIO.parse(fq, "fastq"):
yield ut.ave_qual(rec.letter_annotations["phred_quality"]), len(rec)
def stream_fastq_full(fastq, threads):
"""Generator for returning metrics extracted from fastq.
Extract from a fastq file:
-readname
-average and median quality
-read_lenght
"""
logging.info("Nanoget: Starting to collect full metrics from plain fastq file.")
inputfastq = handle_compressed_input(fastq)
with cfutures.ProcessPoolExecutor(max_workers=threads) as executor:
for results in executor.map(extract_all_from_fastq, SeqIO.parse(inputfastq, "fastq")):
yield results
logging.info("Nanoget: Finished collecting statistics from plain fastq file.")
def extract_all_from_fastq(rec):
"""Extract metrics from a fastq file.
Return identifier, read length, average quality and median quality
"""
return (rec.id, len(rec), ut.ave_qual(rec.letter_annotations["phred_quality"]), None)
def info_to_dict(info):
"""Get the key-value pairs from the albacore/minknow fastq description and return dict"""
return {field.split("=")[0]: field.split("=")[1] for field in info.split(" ")[1:]}
def process_fastq_rich(fastq, **kwargs):
"""Extract metrics from a richer fastq file.
Extract information from fastq files generated by albacore or MinKNOW,
containing richer information in the header (key-value pairs)
read=<int> [72]
ch=<int> [159]
start_time=<timestamp> [2016-07-15T14:23:22Z] # UTC ISO 8601 ISO 3339 timestamp
Z indicates UTC time, T is the delimiter between date expression and time expression
dateutil.parser.parse("2016-07-15T14:23:22Z") imported as dparse
-> datetime.datetime(2016, 7, 15, 14, 23, 22, tzinfo=tzutc())
"""
logging.info("Nanoget: Starting to collect statistics from rich fastq file.")
inputfastq = handle_compressed_input(fastq)
res = []
for record in SeqIO.parse(inputfastq, "fastq"):
try:
read_info = info_to_dict(record.description)
res.append(
(
ut.ave_qual(record.letter_annotations["phred_quality"]),
len(record),
read_info["ch"],
read_info["start_time"],
read_info["runid"],
)
)
except KeyError:
logging.error(f"Nanoget: keyerror when processing record {record.description}")
sys.exit(
f"Unexpected fastq identifier:\n{record.description}\n\n \
missing one or more of expected fields 'ch', 'start_time' or 'runid'"
)
df = pd.DataFrame(
data=res, columns=["quals", "lengths", "channelIDs", "timestamp", "runIDs"]
).dropna()
df["timestamp"] = pd.to_datetime(df["timestamp"], format='mixed', utc=True)
df["channelIDs"] = df["channelIDs"].astype("int64")
return ut.reduce_memory_usage(df)
def readfq(fp):
"""Generator function adapted from https://github.com/lh3/readfq."""
last = None # this is a buffer keeping the last unprocessed line
while True: # mimic closure; is it a bad idea?
if not last: # the first record or a record following a fastq
for l in fp: # search for the start of the next record
if l[0] in ">@": # fasta/q header line
last = l[:-1] # save this line
break
if not last:
break
name, seqs, last = last[1:].partition(" ")[0], [], None
for l in fp: # read the sequence
if l[0] in "@+>":
last = l[:-1]
break
seqs.append(l[:-1])
if not last or last[0] != "+": # this is a fasta record
yield name, "".join(seqs), None # yield a fasta record
if not last:
break
else: # this is a fastq record
seq, leng, seqs = "".join(seqs), 0, []
for l in fp: # read the quality
seqs.append(l[:-1])
leng += len(l) - 1
if leng >= len(seq): # have read enough quality
last = None
yield name, seq, "".join(seqs) # yield a fastq record
break
if last: # reach EOF before reading enough quality
yield name, seq, None # yield a fasta record instead
break
def fq_minimal(fq):
"""Minimal fastq metrics extractor.
Quickly parse a fasta/fastq file - but makes expectations on the file format
There will be dragons if unexpected format is used
Expects a fastq_rich format, but extracts only timestamp and length
"""
try:
while True:
time = next(fq)[1:].split(" ")[4][11:-1]
length = len(next(fq))
next(fq)
next(fq)
yield time, length
except StopIteration:
yield None
def process_fastq_minimal(fastq, **kwargs):
"""Swiftly extract minimal features (length and timestamp) from a rich fastq file"""
infastq = handle_compressed_input(fastq)
try:
df = pd.DataFrame(
data=[rec for rec in fq_minimal(infastq) if rec], columns=["timestamp", "lengths"]
)
except IndexError:
logging.error("Fatal: Incorrect file structure for fastq_minimal")
sys.exit("Error: file does not match expected structure for fastq_minimal")
df["timestamp"] = pd.to_datetime(df["timestamp"])
return ut.reduce_memory_usage(df)
|