1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
# wdecoster
"""
This module provides a few simple math and statistics functions
for other scripts processing Oxford Nanopore sequencing data
# FUNCTIONS
* Calculate read N50 from a set of lengths
get_N50(readlenghts)
* Remove extreme length outliers from a dataset
remove_length_outliers(dataframe, columname)
* Calculate the average Phred quality of a read
ave_qual(qualscores)
* Write out the statistics report after calling readstats function
write_stats(dataframe, outputname)
* Compute a number of statistics, return a dictionary
calc_read_stats(dataframe)
"""
import numpy as np
import sys
from deprecated import deprecated
from math import log
class Stats(object):
def __init__(self, df):
self.number_of_reads = len(df)
self.number_of_bases = np.sum(df["lengths"])
self._with_readIDs = "readIDs" in df
if "aligned_lengths" in df:
self.number_of_bases_aligned = np.sum(df["aligned_lengths"])
self.fraction_bases_aligned = self.number_of_bases_aligned / self.number_of_bases
self.median_read_length = np.median(df["lengths"])
self.mean_read_length = np.mean(df["lengths"])
self.read_length_stdev = np.std(df["lengths"])
self.n50 = get_N50(np.sort(df["lengths"]))
if "percentIdentity" in df:
self.average_identity = np.mean(df["percentIdentity"])
self.median_identity = np.median(df["percentIdentity"])
if "channelIDs" in df:
self.active_channels = np.unique(df["channelIDs"]).size
if "quals" in df:
self._qualgroups = [5, 7, 10, 12, 15] # needs 5 elements in current implementation
self.mean_qual = np.mean(df["quals"])
self.median_qual = np.median(df["quals"])
self._top5_lengths = get_top_5(df=df,
col="lengths",
values=["lengths", "quals"])
self._top5_quals = get_top_5(df=df,
col="quals",
values=["quals", "lengths"])
self._reads_above_qual = [reads_above_qual(df, q) for q in self._qualgroups]
def long_features_as_string(self):
"""formatting long features to a string to print for legacy stats output"""
self.top5_lengths = self.long_feature_as_string_top5(self._top5_lengths)
self.top5_quals = self.long_feature_as_string_top5(self._top5_quals)
self.reads_above_qual = self.long_feature_as_string_above_qual(self._reads_above_qual)
def long_feature_as_string_top5(self, field):
"""for legacy stats output"""
if self._with_readIDs:
return [str(round(i, ndigits=1)) + " (" +
str(round(j, ndigits=1)) + "; " + k + ")" for i, j, k in field]
else:
return [str(round(i, ndigits=1)) + " (" +
str(round(j, ndigits=1)) + ")" for i, j in field]
def long_feature_as_string_above_qual(self, field):
"""for legacy stats output"""
return [self.format_above_qual_line(entry) for entry in field]
def format_above_qual_line(self, entry):
"""for legacy stats output"""
numberAboveQ, megAboveQ = entry
return "{} ({}%) {}Mb".format(numberAboveQ,
round(100 * (numberAboveQ / self.number_of_reads),
ndigits=1),
round(megAboveQ, ndigits=1))
def to_dict(self):
"""for tsv stats output"""
statdict = self.__dict__
for key, value in statdict.items():
if not key.startswith('_'):
if not isinstance(value, int):
statdict[key] = '{:.1f}'.format(value)
self.unwind_long_features_top5(feature='_top5_lengths', name='longest_read_(with_Q)')
self.unwind_long_features_top5(feature='_top5_quals', name='highest_Q_read_(with_length)')
self.unwind_long_features_above_qual(feature='_reads_above_qual', name='Reads')
return {k: v for k, v in statdict.items() if not k.startswith('_')}
def unwind_long_features_top5(self, feature, name):
"""for tsv stats output"""
for entry, label in zip(self.__dict__[feature], range(1, 6)):
self.__dict__[name + ':' + str(label)] = '{} ({})'.format(round(entry[0], ndigits=1),
round(entry[1], ndigits=1))
def unwind_long_features_above_qual(self, feature, name):
"""for tsv stats output"""
for entry, label in zip(self.__dict__[feature],
['>Q{}:'.format(q) for q in self._qualgroups]):
numberAboveQ, megAboveQ = entry
percentage = 100 * (numberAboveQ / float(self.number_of_reads))
self.__dict__[name + ' ' + label] = "{} ({}%) {}Mb".format(numberAboveQ,
round(percentage, ndigits=1),
round(megAboveQ, ndigits=1))
def get_N50(readlengths):
"""Calculate read length N50.
Based on https://github.com/PapenfussLab/Mungo/blob/master/bin/fasta_stats.py
"""
return readlengths[np.where(np.cumsum(readlengths) >= 0.5 * np.sum(readlengths))[0][0]]
@deprecated
def remove_length_outliers(df, columnname):
"""Remove records with length-outliers above 3 standard deviations from the median."""
return df[df[columnname] < (np.median(df[columnname]) + 3 * np.std(df[columnname]))]
def errs_tab(n):
"""Generate list of error rates for qualities less than equal than n."""
return [10**(q / -10) for q in range(n+1)]
@deprecated
def ave_qual(quals, qround=False, tab=errs_tab(128)):
"""Calculate average basecall quality of a read.
Receive the integer quality scores of a read and return the average quality for that read
First convert Phred scores to probabilities,
calculate average error probability
convert average back to Phred scale
"""
if quals:
mq = -10 * log(sum([tab[q] for q in quals]) / len(quals), 10)
if qround:
return round(mq)
else:
return mq
else:
return None
def get_top_5(df, col, values):
if "readIDs" in df:
values.append("readIDs")
return df.sort_values(col, ascending=False) \
.head(5)[values] \
.reset_index(drop=True) \
.itertuples(index=False, name=None)
def reads_above_qual(df, qual):
numberAboveQ = np.sum(df["quals"] > qual)
megAboveQ = np.sum(df.loc[df["quals"] > qual, "lengths"]) / 1e6
return numberAboveQ, megAboveQ
def write_stats(datadfs, outputfile, names=[], as_tsv=False):
"""Call calculation functions and write stats file.
This function takes a list of DataFrames,
and will create a column for each in the tab separated output.
"""
if outputfile == 'stdout':
output = sys.stdout
else:
output = open(outputfile, 'wt')
stats = [Stats(df) for df in datadfs]
if as_tsv:
import pandas as pd
df = pd.DataFrame([s.to_dict() for s in stats]).transpose()
df.index.name = 'Metrics'
if names:
df.columns = names
else:
df.columns = ['dataset']
output.write(df.to_csv(sep='\t'))
return df
else:
write_stats_legacy(stats, names, output, datadfs)
def write_stats_legacy(stats, names, output, datadfs):
"""
Legacy method to write out stats.
Will add padding to pretty print the table, and contain section headers
"""
features = {
"Number of reads": "number_of_reads",
"Total bases": "number_of_bases",
"Total bases aligned": "number_of_bases_aligned",
"Fraction of bases aligned": "fraction_bases_aligned",
"Median read length": "median_read_length",
"Mean read length": "mean_read_length",
"STDEV read length": "read_length_stdev",
"Read length N50": "n50",
"Average percent identity": "average_identity",
"Median percent identity": "median_identity",
"Active channels": "active_channels",
"Mean read quality": "mean_qual",
"Median read quality": "median_qual",
}
max_len = max([len(k) for k in features.keys()])
try:
max_num = max(max([len(str(s.number_of_bases)) for s in stats]),
max([len(str(n)) for n in names])) + 6
except ValueError:
max_num = max([len(str(s.number_of_bases)) for s in stats]) + 6
output.write("{:<{}}{}\n".format('General summary:', max_len,
" ".join(['{:>{}}'.format(n, max_num) for n in names])))
for f in sorted(features.keys()):
try:
output.write("{f:{pad}}{v}\n".format(
f=f + ':',
pad=max_len,
v=feature_list(stats, features[f], padding=max_num)))
except KeyError:
pass
if all(["quals" in df for df in datadfs]):
for s in stats:
s.long_features_as_string()
long_features = {
"Top 5 longest reads and their mean basecall quality score":
["top5_lengths", range(1, 6)],
"Top 5 highest mean basecall quality scores and their read lengths":
["top5_quals", range(1, 6)],
"Number, percentage and megabases of reads above quality cutoffs":
["reads_above_qual", [">Q" + str(q) for q in stats[0]._qualgroups]],
}
for lf in sorted(long_features.keys()):
output.write(lf + "\n")
for index in range(5):
output.write("{}:\t{}\n".format(
long_features[lf][1][index], feature_list(stats=stats,
feature=long_features[lf][0],
index=index)))
def feature_list(stats, feature, index=None, padding=15):
if index is None:
return ' '.join(['{:>{},.1f}'.format(s.__dict__[feature], padding) for s in stats])
else:
return '\t'.join([str(s.__dict__[feature][index]) if len(s.__dict__[feature]) > index
else "NA"
for s in stats])
|