1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
================================
Tutorial 3: Working with IP sets
================================
First of all you need to pull the various netaddr classes and functions into your namespace.
.. note:: Do this for the purpose of this tutorial only. In your own code, you should be explicit about the classes, functions and constants you import to avoid name clashes.
>>> from netaddr import *
----------------
Creating IP sets
----------------
Here how to create IP sets.
An empty set.
>>> IPSet()
IPSet([])
>>> IPSet([])
IPSet([])
>>> len(IPSet([]))
0
You can specify either IP addresses and networks as strings. Alternatively, you
can use IPAddress, IPNetwork, IPRange or other IPSet objects.
>>> IPSet(['192.0.2.0'])
IPSet(['192.0.2.0/32'])
>>> IPSet([IPAddress('192.0.2.0')])
IPSet(['192.0.2.0/32'])
>>> IPSet([IPNetwork('192.0.2.0')])
IPSet(['192.0.2.0/32'])
>>> IPSet(IPNetwork('1234::/32'))
IPSet(['1234::/32'])
>>> IPSet([IPNetwork('192.0.2.0/24')])
IPSet(['192.0.2.0/24'])
>>> IPSet(IPSet(['192.0.2.0/32']))
IPSet(['192.0.2.0/32'])
>>> IPSet(IPRange("10.0.0.0", "10.0.1.31"))
IPSet(['10.0.0.0/24', '10.0.1.0/27'])
>>> IPSet(IPRange('0.0.0.0', '255.255.255.255'))
IPSet(['0.0.0.0/0'])
You can iterate over all the IP addresses that are members of the IP set.
>>> for ip in IPSet(['192.0.2.0/28', '::ffff:192.0.2.0/124']):
... print(ip)
192.0.2.0
192.0.2.1
192.0.2.2
192.0.2.3
192.0.2.4
192.0.2.5
192.0.2.6
192.0.2.7
192.0.2.8
192.0.2.9
192.0.2.10
192.0.2.11
192.0.2.12
192.0.2.13
192.0.2.14
192.0.2.15
::ffff:192.0.2.0
::ffff:192.0.2.1
::ffff:192.0.2.2
::ffff:192.0.2.3
::ffff:192.0.2.4
::ffff:192.0.2.5
::ffff:192.0.2.6
::ffff:192.0.2.7
::ffff:192.0.2.8
::ffff:192.0.2.9
::ffff:192.0.2.10
::ffff:192.0.2.11
::ffff:192.0.2.12
::ffff:192.0.2.13
::ffff:192.0.2.14
::ffff:192.0.2.15
--------------------------------
Adding and removing set elements
--------------------------------
>>> s1 = IPSet()
>>> s1.add('192.0.2.0')
>>> s1
IPSet(['192.0.2.0/32'])
>>> s1.remove('192.0.2.0')
>>> s1
IPSet([])
>>> s1.add(IPRange("10.0.0.0", "10.0.0.255"))
>>> s1
IPSet(['10.0.0.0/24'])
>>> s1.remove(IPRange("10.0.0.128", "10.10.10.10"))
>>> s1
IPSet(['10.0.0.0/25'])
--------------
Set membership
--------------
Here is a simple arbitrary IP address range.
>>> iprange = IPRange('192.0.1.255', '192.0.2.16')
We can see the CIDR networks that can existing with this defined range.
>>> iprange.cidrs()
[IPNetwork('192.0.1.255/32'), IPNetwork('192.0.2.0/28'), IPNetwork('192.0.2.16/32')]
Here's an IP set.
>>> ipset = IPSet(['192.0.2.0/28'])
Now, let's iterate over the IP addresses in the arbitrary IP address range and see if they are found within the IP set.
>>> for ip in iprange:
... print(ip, ip in ipset)
192.0.1.255 False
192.0.2.0 True
192.0.2.1 True
192.0.2.2 True
192.0.2.3 True
192.0.2.4 True
192.0.2.5 True
192.0.2.6 True
192.0.2.7 True
192.0.2.8 True
192.0.2.9 True
192.0.2.10 True
192.0.2.11 True
192.0.2.12 True
192.0.2.13 True
192.0.2.14 True
192.0.2.15 True
192.0.2.16 False
More exotic IPSets
>>> bigone = IPSet(['0.0.0.0/0'])
>>> IPAddress("10.0.0.1") in bigone
True
>>> IPAddress("0.0.0.0") in bigone
True
>>> IPAddress("255.255.255.0") in bigone
True
>>> IPNetwork("10.0.0.0/24") in bigone
True
>>> IPAddress("::1") in bigone
False
>>> smallone = IPSet(["10.0.0.42/32"])
>>> IPAddress("10.0.0.42") in smallone
True
>>> IPAddress("10.0.0.41") in smallone
False
>>> IPAddress("10.0.0.43") in smallone
False
>>> IPNetwork("10.0.0.42/32") in smallone
True
>>> IPNetwork("10.0.0.42/31") in smallone
False
-------------------------------------
Unions, intersections and differences
-------------------------------------
Here are some examples of union operations performed on `IPSet` objects.
>>> IPSet(['192.0.2.0'])
IPSet(['192.0.2.0/32'])
>>> IPSet(['192.0.2.0']) | IPSet(['192.0.2.1'])
IPSet(['192.0.2.0/31'])
>>> IPSet(['192.0.2.0']) | IPSet(['192.0.2.1']) | IPSet(['192.0.2.3'])
IPSet(['192.0.2.0/31', '192.0.2.3/32'])
>>> IPSet(['192.0.2.0']) | IPSet(['192.0.2.1']) | IPSet(['192.0.2.3/30'])
IPSet(['192.0.2.0/30'])
>>> IPSet(['192.0.2.0']) | IPSet(['192.0.2.1']) | IPSet(['192.0.2.3/31'])
IPSet(['192.0.2.0/30'])
>>> IPSet(['192.0.2.0/24']) | IPSet(['192.0.3.0/24']) | IPSet(['192.0.4.0/24'])
IPSet(['192.0.2.0/23', '192.0.4.0/24'])
Here is an example of the union, intersection and symmetric difference operations all in play at the same time.
>>> adj_cidrs = list(IPNetwork('192.0.2.0/24').subnet(28))
>>> even_cidrs = adj_cidrs[::2]
>>> evens = IPSet(even_cidrs)
>>> evens
IPSet(['192.0.2.0/28', '192.0.2.32/28', '192.0.2.64/28', '192.0.2.96/28', '192.0.2.128/28', '192.0.2.160/28', '192.0.2.192/28', '192.0.2.224/28'])
>>> IPSet(['192.0.2.0/24']) & evens
IPSet(['192.0.2.0/28', '192.0.2.32/28', '192.0.2.64/28', '192.0.2.96/28', '192.0.2.128/28', '192.0.2.160/28', '192.0.2.192/28', '192.0.2.224/28'])
>>> odds = IPSet(['192.0.2.0/24']) ^ evens
>>> odds
IPSet(['192.0.2.16/28', '192.0.2.48/28', '192.0.2.80/28', '192.0.2.112/28', '192.0.2.144/28', '192.0.2.176/28', '192.0.2.208/28', '192.0.2.240/28'])
>>> evens | odds
IPSet(['192.0.2.0/24'])
>>> evens & odds
IPSet([])
>>> evens ^ odds
IPSet(['192.0.2.0/24'])
---------------------
Supersets and subsets
---------------------
IP sets provide the ability to test whether a group of addresses ranges fit within the set of another group of address ranges.
>>> s1 = IPSet(['192.0.2.0/24', '192.0.4.0/24'])
>>> s2 = IPSet(['192.0.2.0', '192.0.4.0'])
>>> s1
IPSet(['192.0.2.0/24', '192.0.4.0/24'])
>>> s2
IPSet(['192.0.2.0/32', '192.0.4.0/32'])
>>> s1.issuperset(s2)
True
>>> s2.issubset(s1)
True
>>> s2.issuperset(s1)
False
>>> s1.issubset(s2)
False
Here's a more complete example using various well known IPv4 address ranges.
>>> ipv4_addr_space = IPSet(['0.0.0.0/0'])
>>> private = IPSet(['10.0.0.0/8', '172.16.0.0/12', '192.0.2.0/24', '192.168.0.0/16', '239.192.0.0/14'])
>>> reserved = IPSet(['225.0.0.0/8', '226.0.0.0/7', '228.0.0.0/6', '234.0.0.0/7', '236.0.0.0/7', '238.0.0.0/8', '240.0.0.0/4'])
>>> unavailable = reserved | private
>>> available = ipv4_addr_space ^ unavailable
Let's see what we've got:
>>> for cidr in available.iter_cidrs():
... print(cidr, cidr[0], cidr[-1])
0.0.0.0/5 0.0.0.0 7.255.255.255
8.0.0.0/7 8.0.0.0 9.255.255.255
11.0.0.0/8 11.0.0.0 11.255.255.255
12.0.0.0/6 12.0.0.0 15.255.255.255
16.0.0.0/4 16.0.0.0 31.255.255.255
32.0.0.0/3 32.0.0.0 63.255.255.255
64.0.0.0/2 64.0.0.0 127.255.255.255
128.0.0.0/3 128.0.0.0 159.255.255.255
160.0.0.0/5 160.0.0.0 167.255.255.255
168.0.0.0/6 168.0.0.0 171.255.255.255
172.0.0.0/12 172.0.0.0 172.15.255.255
172.32.0.0/11 172.32.0.0 172.63.255.255
172.64.0.0/10 172.64.0.0 172.127.255.255
172.128.0.0/9 172.128.0.0 172.255.255.255
173.0.0.0/8 173.0.0.0 173.255.255.255
174.0.0.0/7 174.0.0.0 175.255.255.255
176.0.0.0/4 176.0.0.0 191.255.255.255
192.0.0.0/23 192.0.0.0 192.0.1.255
192.0.3.0/24 192.0.3.0 192.0.3.255
192.0.4.0/22 192.0.4.0 192.0.7.255
192.0.8.0/21 192.0.8.0 192.0.15.255
192.0.16.0/20 192.0.16.0 192.0.31.255
192.0.32.0/19 192.0.32.0 192.0.63.255
192.0.64.0/18 192.0.64.0 192.0.127.255
192.0.128.0/17 192.0.128.0 192.0.255.255
192.1.0.0/16 192.1.0.0 192.1.255.255
192.2.0.0/15 192.2.0.0 192.3.255.255
192.4.0.0/14 192.4.0.0 192.7.255.255
192.8.0.0/13 192.8.0.0 192.15.255.255
192.16.0.0/12 192.16.0.0 192.31.255.255
192.32.0.0/11 192.32.0.0 192.63.255.255
192.64.0.0/10 192.64.0.0 192.127.255.255
192.128.0.0/11 192.128.0.0 192.159.255.255
192.160.0.0/13 192.160.0.0 192.167.255.255
192.169.0.0/16 192.169.0.0 192.169.255.255
192.170.0.0/15 192.170.0.0 192.171.255.255
192.172.0.0/14 192.172.0.0 192.175.255.255
192.176.0.0/12 192.176.0.0 192.191.255.255
192.192.0.0/10 192.192.0.0 192.255.255.255
193.0.0.0/8 193.0.0.0 193.255.255.255
194.0.0.0/7 194.0.0.0 195.255.255.255
196.0.0.0/6 196.0.0.0 199.255.255.255
200.0.0.0/5 200.0.0.0 207.255.255.255
208.0.0.0/4 208.0.0.0 223.255.255.255
224.0.0.0/8 224.0.0.0 224.255.255.255
232.0.0.0/7 232.0.0.0 233.255.255.255
239.0.0.0/9 239.0.0.0 239.127.255.255
239.128.0.0/10 239.128.0.0 239.191.255.255
239.196.0.0/14 239.196.0.0 239.199.255.255
239.200.0.0/13 239.200.0.0 239.207.255.255
239.208.0.0/12 239.208.0.0 239.223.255.255
239.224.0.0/11 239.224.0.0 239.255.255.255
>>> ipv4_addr_space ^ available
IPSet(['10.0.0.0/8', '172.16.0.0/12', '192.0.2.0/24', '192.168.0.0/16', '225.0.0.0/8', '226.0.0.0/7', '228.0.0.0/6', '234.0.0.0/7', '236.0.0.0/7', '238.0.0.0/8', '239.192.0.0/14', '240.0.0.0/4'])
------------------------------
Combined IPv4 and IPv6 support
------------------------------
In keeping with netaddr's pragmatic approach, you are free to mix and match IPv4 and IPv6 within the same data structure.
>>> s1 = IPSet(['192.0.2.0', '::ffff:192.0.2.0', '192.0.2.2', '::ffff:192.0.2.2'])
>>> s2 = IPSet(['192.0.2.2', '::ffff:192.0.2.2', '192.0.2.4', '::ffff:192.0.2.4'])
>>> s1
IPSet(['192.0.2.0/32', '192.0.2.2/32', '::ffff:192.0.2.0/128', '::ffff:192.0.2.2/128'])
>>> s2
IPSet(['192.0.2.2/32', '192.0.2.4/32', '::ffff:192.0.2.2/128', '::ffff:192.0.2.4/128'])
^^^^^^^^^^^^^^^^^^^^^^^
IPv4 and IPv6 set union
^^^^^^^^^^^^^^^^^^^^^^^
>>> s1 | s2
IPSet(['192.0.2.0/32', '192.0.2.2/32', '192.0.2.4/32', '::ffff:192.0.2.0/128', '::ffff:192.0.2.2/128', '::ffff:192.0.2.4/128'])
>>> s2 | s1
IPSet(['192.0.2.0/32', '192.0.2.2/32', '192.0.2.4/32', '::ffff:192.0.2.0/128', '::ffff:192.0.2.2/128', '::ffff:192.0.2.4/128'])
^^^^^^^^^^^^^^^^
set intersection
^^^^^^^^^^^^^^^^
>>> s1 & s2
IPSet(['192.0.2.2/32', '::ffff:192.0.2.2/128'])
^^^^^^^^^^^^^^
set difference
^^^^^^^^^^^^^^
>>> s1 - s2
IPSet(['192.0.2.0/32', '::ffff:192.0.2.0/128'])
>>> s2 - s1
IPSet(['192.0.2.4/32', '::ffff:192.0.2.4/128'])
^^^^^^^^^^^^^^^^^^^^^^^^
set symmetric difference
^^^^^^^^^^^^^^^^^^^^^^^^
>>> s1 ^ s2
IPSet(['192.0.2.0/32', '192.0.2.4/32', '::ffff:192.0.2.0/128', '::ffff:192.0.2.4/128'])
------------------
Disjointed IP sets
------------------
>>> s1 = IPSet(['192.0.2.0', '192.0.2.1', '192.0.2.2'])
>>> s2 = IPSet(['192.0.2.2', '192.0.2.3', '192.0.2.4'])
>>> s1 & s2
IPSet(['192.0.2.2/32'])
>>> s1.isdisjoint(s2)
False
>>> s1 = IPSet(['192.0.2.0', '192.0.2.1'])
>>> s2 = IPSet(['192.0.2.3', '192.0.2.4'])
>>> s1 & s2
IPSet([])
>>> s1.isdisjoint(s2)
True
------------------
Updating an IP set
------------------
As with a normal Python set you can also update one IP set with the contents of another.
>>> s1 = IPSet(['192.0.2.0/25'])
>>> s1
IPSet(['192.0.2.0/25'])
>>> s2 = IPSet(['192.0.2.128/25'])
>>> s2
IPSet(['192.0.2.128/25'])
>>> s1.update(s2)
>>> s1
IPSet(['192.0.2.0/24'])
>>> s1.update(['192.0.0.0/24', '192.0.1.0/24', '192.0.3.0/24'])
>>> s1
IPSet(['192.0.0.0/22'])
>>> s2 = IPSet(['10.0.0.0/16'])
>>> s2.update(IPRange('10.1.0.0', '10.1.255.255'))
>>> s2
IPSet(['10.0.0.0/15'])
>>> s2.clear()
>>> s2
IPSet([])
--------------------------------
Removing elements from an IP set
--------------------------------
Removing an IP address from an IPSet will split the CIDR subnets within it into their constituent parts.
Here we create a set representing the entire IPv4 address space.
>>> s1 = IPSet(['0.0.0.0/0'])
>>> s1
IPSet(['0.0.0.0/0'])
Then we strip off the last address.
>>> s1.remove('255.255.255.255')
Leaving us with:
>>> s1
IPSet(['0.0.0.0/1', '128.0.0.0/2', ..., '255.255.255.252/31', '255.255.255.254/32'])
>>> list(s1.iter_cidrs())
[IPNetwork('0.0.0.0/1'), IPNetwork('128.0.0.0/2'), ..., IPNetwork('255.255.255.252/31'), IPNetwork('255.255.255.254/32')]
>>> len(list(s1.iter_cidrs()))
32
Let's check the result using the `cidr_exclude` function.
>>> list(s1.iter_cidrs()) == cidr_exclude('0.0.0.0/0', '255.255.255.255')
True
Next, let's remove the first address from the original range.
>>> s1.remove('0.0.0.0')
This fractures the CIDR subnets further.
>>> s1
IPSet(['0.0.0.1/32', '0.0.0.2/31', ..., '255.255.255.252/31', '255.255.255.254/32'])
>>> len(list(s1.iter_cidrs()))
62
You can keep doing this but be aware that large IP sets can take up a lot of memory if they contain many thousands of entries.
----------------------------
Adding elements to an IP set
----------------------------
Let's fix up the fractured IP set from the previous section by re-adding the IP addresses we removed.
>>> s1.add('255.255.255.255')
>>> s1
IPSet(['0.0.0.1/32', '0.0.0.2/31', ..., '64.0.0.0/2', '128.0.0.0/1'])
Getting better.
>>> list(s1.iter_cidrs())
[IPNetwork('0.0.0.1/32'), IPNetwork('0.0.0.2/31'), ..., IPNetwork('64.0.0.0/2'), IPNetwork('128.0.0.0/1')]
>>> len(list(s1.iter_cidrs()))
32
Add back the other IP address.
>>> s1.add('0.0.0.0')
And we're back to our original address.
>>> s1
IPSet(['0.0.0.0/0'])
--------------------------------
Convert an IP set to an IP Range
--------------------------------
Sometimes you may want to convert an IPSet back to an IPRange.
>>> s1 = IPSet(['10.0.0.0/25', '10.0.0.128/25'])
>>> s1.iprange()
IPRange('10.0.0.0', '10.0.0.255')
This only works if the IPSet is contiguous
>>> s1.iscontiguous()
True
>>> s1.remove('10.0.0.16')
>>> s1
IPSet(['10.0.0.0/28', '10.0.0.17/32', '10.0.0.18/31', '10.0.0.20/30', '10.0.0.24/29', '10.0.0.32/27', '10.0.0.64/26', '10.0.0.128/25'])
>>> s1.iscontiguous()
False
>>> s1.iprange()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: IPSet is not contiguous
If it is not contiguous, you can still convert the IPSet, but you will get multiple IPRanges.
>>> list(s1.iter_ipranges())
[IPRange('10.0.0.0', '10.0.0.15'), IPRange('10.0.0.17', '10.0.0.255')]
>>> s2 = IPSet(['0.0.0.0/0'])
>>> s2.iscontiguous()
True
>>> s2.iprange()
IPRange('0.0.0.0', '255.255.255.255')
>>> s3 = IPSet()
>>> s3.iscontiguous()
True
>>> s3.iprange()
>>> s4 = IPSet(IPRange('10.0.0.0', '10.0.0.8'))
>>> s4.iscontiguous()
True
----------------------
Pickling IPSet objects
----------------------
As with all other netaddr classes, you can use ``pickle`` to persist IP sets for later use.
>>> import pickle
>>> ip_data = IPSet(['10.0.0.0/16', 'fe80::/64'])
>>> buf = pickle.dumps(ip_data)
>>> ip_data_unpickled = pickle.loads(buf)
>>> ip_data == ip_data_unpickled
True
----------------------
Compare IPSet objects
----------------------
>>> x = IPSet(['fc00::/2'])
>>> y = IPSet(['fc00::/3'])
>>> x > y
True
>>> x < y
False
>>> x != y
True
|