1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
============================
**NetworkX Quick Reference**
============================
**NetworkX Quick Reference**
============================
More detailed documentation and listing of options and defaults can
be found in the `html documentation`_ or by using pydoc (or interactive
help) on a function, method or class. For example, for methods of the
Graph class such as add_node, use
::
pydoc networkx.Graph.add_node
or
::
pydoc networkx.Graph
to report all Graph methods.
For functions associated with multiple graph classes, such
as subgraph or watts_strogatz_graph, use
::
pydoc networkx.subgraph
or
::
pydoc networkx.watts_strogatz_graph
Terminology
===========
Graph or network structure is encoded in the **edges** (connections,
links, ties, arcs, bonds) between **nodes** (vertices, sites,
actors).
::
nlist - a list of nodes.
nbunch - a bunch of nodes:
any iterable container of nodes.
e=(u,v) - a Graph or DiGraph edge as a Python tuple (also written u-v or u->v).
e=(u,v,x) - an XGraph or XGraph edge as a Python tuple, x is an arbitrary object.
elist - a list of edges.
ebunch - a bunch of edges:
any iterable container of edge-tuples.
Creation
========
::
G=Graph() - create empty simple graph G.
G=DiGraph() - create empty simple directed graph G.
G=XGraph() - create empty graph G with edge data.
G=XDiGraph() - create empty directed graph G with edge data.
G=empty_graph(n) - create empty graph with n nodes.
G=empty_graph(n,create_using=DiGraph()) - create empty digraph with n nodes.
G=create_empty_copy(H) - create new, empty graph of same class as H.
Manipulation
============
Methods associated with a graph-like object G:
----------------------------------------------
::
G.add_node(n) - add single node to G.
G.add_nodes_from(nbunch) - add each node in nbunch to G.
G.delete_node(n) - delete node n from G.
G.delete_nodes_from(nbunch) - delete each node n in nbunch.
G.add_edge(u,v) - add edge (u,v) to G.
if G is a digraph, add directed edge u->v.
G.add_edge(e) - add edge e=(u,v) *(equivalent to above)*
G.add_edges_from(ebunch) - add each edge e in ebunch to G.
G.delete_edge(u,v) - delete edge (u,v)
G.delete_edge(e) - delete edge e=(u,v)
G.delete_edges_from(ebunch) - delete each edge in ebunch from G.
G.add_path(nlist) - add nodes and edges to make ordered path.
G.add_cycle(nlist) - same as add_path, but end nodes are
connected.
G.clear() - delete all nodes and edges.
G.copy() - return "shallow" copy of the graph
(like dict.copy())
G.subgraph(nbunch) - return subgraph induced by nodes in nbunch.
New graphs from old
===================
::
subgraph(G, nbunch) - subgraph induced by nodes in nbunch.
union(G1,G2) - graph union.
disjoint_union(G1,G2) - graph union, assuming all nodes are different.
cartesian_product(G1,G2) - Cartesian product graph.
compose(G1,G2) - combine graphs, identifying nodes with same names.
complement(G) - return graph complement.
create_empty_copy(G) - empty copy of the same graph class.
convert_to_undirected(G) - return an undirected copy of G.
convert_to_directed(G) - return a directed copy of G.
convert_node_labels_to_integers(G) - return copy with nodes relabed as integers.
Graph Properties
================
Methods:
--------
::
G.order() - number of nodes in G.
G.size() - number of edges in G.
G.nodes() - return copy of all nodes of G in a list.
G.nodes_iter() - return iterator over all nodes in G.
G.has_node(n) - True if n is a node in G.
n in G - equivalent to G.has_node(n)
G.edges() - return list of all edges in G.
G.edges(nbunch) - return list of edges adjacent to some node in nbunch.
G.edges_iter() - return iterator over all edges in G.
G.edges_iter(nbunch) - return iterator that iterate once over
each edge adjacent to some node in nbunch.
G.has_edge(u,v) - True if (u,v) is an edge in G.
G.neighbors(n) - return list of nodes connected to node n.
G[n] - equivalent to G.neighbors(n).
G.neighbors_iter(n) - return iterator over the neighbors of node n.
G.has_neighbor(v,u) - check if u is a neighbor of v (returns True or False).
G.degree(n) - return degree of node n.
G.degree() - return list of degrees of all nodes in G.
G.degree(with_labels=True) - return dict mapping each node in G to
its degree.
G.degree(nbunch) - return list of degrees of all nodes in nbunch.
G.degree(nbunch,with_labels=True) - return dict mapping each n in nbunch to degree(n)
Directed Graphs Only
--------------------
::
G.out_edges() - like edges, but only outward pointing edges.
G.in_edges() - like edges, but only inward pointing edges.
G.in_degree() - like degree, but only inward edges count.
G.out_degree() - like degree, but only outward edges count.
G.predecessors() - like neighbors, but only inward edges count.
G.successors() - like neighbors, but only outward edges count.
G.predecessors_iter() - like neighbors_iter, but only inward edges count.
G.successors_iter() - like neighbors_iter, but only outward edges count.
Functions
---------
::
number_of_nodes(G) - number of nodes in G.
order(G) - equivalent to above.
number_of_edges(G) - number of edges in G.
size(G) - equivalent to above.
density(G) - fraction of possible edges which exist.
nodes(G) - return copy of all nodes of G in a list.
nodes_iter(G) - return iterator over all nodes in G.
edges(G) - return list of all edges in G.
edges_iter(G) - return iterator over all edges in G.
diameter(G) - return maximum of all-pairs shortest path.
periphery(G) - return list of nodes with eccentricity equal to diameter.
radius(G) - return minimum of all-pairs shortest path.
center(G) - return list of nodes with eccentricity equal to radius.
is_directed(G) - True if G is a directed graph.
is_connected(G) - True if G is a connected graph.
number_connected_components(G) - number of connected components in G.
connected_components(G) - list of lists of nodes in each component of G.
average_clustering(G) - clustering coefficient averaged over nodes of G.
transitivity(G) - fraction of transitive triples that are triangles.
communities(G) - list of lists storing binary-tree community dendrogram.
kl_connected_subgraph(G) - subgraph of G that is kl-connected.
is_kl_connected(G) - True if G is kl-connected.
adj_matrix(G) - adjacency matrix for G as a Numeric array.
laplacian(G) - Graph Laplacian for G as a Numeric array.
generalized_laplacian(G) - generalized graph Laplacian for G as a Numeric array.
is_directed_acyclic_graph(G) - True if DAG.
topological_sort(G) - list of nodes in directed graph such that every edge goes from left to right.
Nodal Properties
----------------
*If n is unspecified, then report properties of all nodes in graph.*
::
neighbors(G,n) - neighbors of n in G.
G[n] - same as above.
degree(G,n) - number of edges for n in G.
eccentricity(G,n) - maximum of shortest-path lengths from n to anywhere in G.
triangles(G,n) - number of triangles which include n.
clustering(G,n) - clustering coefficient: ratio of triangles to potential.
node_betweenness(G,n) - number of shortest paths through n.
betweenness_centrality(G,n) - fraction of shortest paths that go through n.
degree_centrality(G,n) - frction of possible nodes connected to n.
closeness_centrality(G,n) - 1/(average distance to all nodes from n).
shortest_path(G,u,v) - list denoting the shortest path from u to v.
shortest_path_length(G,u,v) - length of the shortest path from u to v.
node_connected_component(G,n) - list of nodes in node n's connected component.
dijkstra(G,u) - dicts for shortest weighted paths and path length from u.
dijkstra_shortest_path(G,u) - dict of paths from u keyed by target node.
dijkstra_path_length(G,u) - dict of path lengths from u keyed by target node.
Generating Graphs
=================
Variable size graphs
--------------------
::
make_small_graph(graph_description,create_using=None,**kwds)
LCF_graph(n, shift_list, repeats)
balanced_tree(r, h)
barbell_graph(m1, m2)
complete_graph(n)
complete_bipartite_graph(n1, n2)
circular_ladder_graph(n)
cycle_graph(n)
empty_graph(n, create_using=None, **kwds)
grid_graph([m1,m2,...,mk])
grid_2d_graph(m, n)
hypercube_graph(n)
ladder_graph(n)
lollipop_graph(m, n)
null_graph(create_using=None, **kwds)
path_graph(n)
periodic_grid_2d_graph(m, n)
star_graph(n)
wheel_graph(n)
Small, named graphs of fixed size
---------------------------------
::
bull_graph(), chvatal_graph(), cubical_graph(), desargues_graph(),
diamond_graph(), dodecahedral_graph(), frucht_graph(),
heawood_graph(), house_graph(), house_x_graph(),
icosahedral_graph(), krackhardt_kite_graph(),
moebius_kantor_graph(), octahedral_graph(), pappus_graph(),
petersen_graph(), sedgewick_maze_graph(), tetrahedral_graph(), trivial_graph()
truncated_cube_graph(), truncated_tetrahedron_graph(), tutte_graph()
Random graphs
-------------
::
barabasi_albert_graph(n, m, seed=None)
binomial_graph(n, p, seed=None)
erdos_renyi_graph(n, p, seed=None)
gnm_random_graph(n, m, seed=None)
gnp_random_graph(n, p, seed=None)
powerlaw_cluster_graph(n, m, p, seed=None)
random_regular_graph(d, n, seed=None)
random_lobster(n, p1, p2, seed=None)
watts_strogatz_graph(n, k, p, seed=None)
Graphs from degree sequences
----------------------------
::
configuration_model(deg_sequence, seed=None)
havel_hakimi_graph(deg_sequence, seed=None)
is_valid_degree_sequence(deg_sequence)
create_degree_sequence(n, sfunction=None, max_tries=50, **kwds)
pareto_sequence(n, exponent=1.0) - return a sequence with pareto distribution of length n.
powerlaw_sequence(n, exponent=2.0) - return a sequence with powerlaw distribution of length n.
uniform_sequence(n) - return a sequence with uniform distribution of length n.
discrete_sequence(n, distribution) - return a sequence with distribution matching given distribution.
IO
==
::
read_adjlist(path, comments='#', delimiter=' ', create_using=None, nodetype=None)
write_adjlist(G, path, comments='#', delimiter=' ')
read_edgelist(path, comments="#", delimiter=' ', create_using=None, nodetype=None, edgetype=None)
write_edgelist(G, path, comments="#", delimiter=' ')
read_multiline_adjlist(path, comments='#', delimiter=' ', create_using=None, nodetype=None, edgetype=None )
write_multiline_adjlist(G, path, comments='#', delimiter=' ')
read_gpickle(path)
write_gpickle(G, path)
read_yaml(path)
write_yaml(G, path, default_flow_style=False)
.. _html documentation: https://networkx.lanl.gov/Reference/
|