File: betweenness.py

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (284 lines) | stat: -rw-r--r-- 8,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
"""
Betweenness centrality measures.

"""
#    Copyright (C) 2004-2010 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""

__all__ = ['betweenness_centrality',
           'edge_betweenness_centrality',
           'edge_betweenness'
           ]

import heapq
import networkx as nx

def betweenness_centrality(G,normalized=True,
                           weighted_edges=False,
                           endpoints=False):
    """Compute betweenness centrality for nodes.

    Betweenness centrality of a node is the fraction of all shortest 
    paths that pass through that node.

    Parameters
    ----------
    G : graph
      A networkx graph 

    normalized : bool, optional
      If True the betweenness values are normalized by
      b=b/(n-1)(n-2) where n is the number of nodes in G.
       
    weighted_edges : bool, optional
      Consider the edge weights in determining the shortest paths.
      The edge weights must be greater than zero.
      If False, all edge weights are considered equal.



    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with betweenness centrality as the value.

    See Also
    --------
    edge_betweenness_centrality
    load_centrality

    Notes
    -----
    The algorithm is from Ulrik Brandes [1]_.

    For weighted graphs the edge weights must be greater than zero.
    Zero edge weights can produce an infinite number of equal length 
    paths between pairs of nodes.

    References
    ----------
    .. [1]  A Faster Algorithm for Betweenness Centrality.
       Ulrik Brandes, 
       Journal of Mathematical Sociology 25(2):163-177, 2001.
       http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
    """
    betweenness=dict.fromkeys(G,0.0) # b[v]=0 for v in G
    for s in G:
        # single source shortest paths
        if weighted_edges:  # use Dijkstra's algorithm
            S,P,sigma=_single_source_dijkstra_path_basic(G,s)
        else:  # use BFS
            S,P,sigma=_single_source_shortest_path_basic(G,s)
        # accumulation
        if endpoints: 
            betweenness=_accumulate_endpoints(betweenness,S,P,sigma,s)        
        else:
            betweenness=_accumulate_basic(betweenness,S,P,sigma,s)
    # rescaling
    betweenness=_rescale(betweenness,
                         normalized=normalized,
                         directed=G.is_directed())
    return betweenness            


def edge_betweenness_centrality(G,normalized=True,
                                weighted_edges=False):
    """Compute betweenness centrality for edges.

    Betweenness centrality of an edge is the fraction of all shortest 
    paths that pass through that edge.

    Parameters
    ----------
    G : graph
      A networkx graph 

    normalized : bool, optional
      If True the betweenness values are normalized by 
      b=b/(n-1)(n-2) where n is the number of nodes in G.
       
    weighted_edges : bool, optional
      Consider the edge weights in determining the shortest paths.
      The edge weights must be greater than zero.
      If False, all edge weights are considered equal.


    Returns
    -------
    edges : dictionary
       Dictionary of edges with betweenness centrality as the value.
        
    See Also
    --------
    betweenness_centrality
    edge_load

    Notes
    -----
    The algorithm is from Ulrik Brandes [1]_.

    For weighted graphs the edge weights must be greater than zero.
    Zero edge weights can produce an infinite number of equal length 
    paths between pairs of nodes.


    References
    ----------
    .. [1]  A Faster Algorithm for Betweenness Centrality.
       Ulrik Brandes, 
       Journal of Mathematical Sociology 25(2):163-177, 2001.
       http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
    """
    betweenness=dict.fromkeys(G,0.0) # b[v]=0 for v in G
    # b[e]=0 for e in G.edges()
    betweenness.update(dict.fromkeys(G.edges(),0.0)) 
    for s in G:
        # single source shortest paths
        if weighted_edges:  # use Dijkstra's algorithm
            S,P,sigma=_single_source_dijkstra_path_basic(G,s)
        else:  # use BFS
            S,P,sigma=_single_source_shortest_path_basic(G,s)
        # accumulation
        betweenness=_accumulate_edges(betweenness,S,P,sigma,s)
    # rescaling
    for n in G: # remove nodes to only return edges 
        del betweenness[n]
    betweenness=_rescale(betweenness,
                         normalized=normalized,
                         directed=G.is_directed())
    return betweenness            

# obsolete name
def edge_betweenness(G,normalized=True,weighted_edges=False):
    import warnings
    warnings.warn("""edge_betweenness() is deprecated, 
use edge_betweenness_centrality()""", 
                      DeprecationWarning)

    return edge_betweenness_centrality(G,
                                       normalized=normalized,
                                       weighted_edges=weighted_edges)


# helpers for betweenness centrality

def _single_source_shortest_path_basic(G,s):
    S=[]
    P={}
    for v in G:
        P[v]=[]
    sigma=dict.fromkeys(G,0.0)    # sigma[v]=0 for v in G
    D={}
    sigma[s]=1.0
    D[s]=0
    Q=[s]
    while Q:   # use BFS to find shortest paths
        v=Q.pop(0)
        S.append(v)
        Dv=D[v]
        sigmav=sigma[v]
        for w in G[v]:
            if w not in D:
                Q.append(w)
                D[w]=Dv+1
            if D[w]==Dv+1:   # this is a shortest path, count paths
                sigma[w] += sigmav
                P[w].append(v) # predecessors 
    return S,P,sigma



def _single_source_dijkstra_path_basic(G,s):
    # modified from Eppstein
    S=[]
    P={}
    for v in G:
        P[v]=[]
    sigma=dict.fromkeys(G,0.0)    # sigma[v]=0 for v in G
    D={}
    sigma[s]=1.0
    push=heapq.heappush
    pop=heapq.heappop
    seen = {s:0} 
    Q=[]   # use Q as heap with (distance,node id) tuples
    push(Q,(0,s,s))
    while Q:   
        (dist,pred,v)=pop(Q)
        if v in D:
            continue # already searched this node.
        sigma[v] += sigma[pred] # count paths
        S.append(v)
        D[v] = dist
        for w,edgedata in G[v].iteritems():
            vw_dist = dist + edgedata.get('weight',1)
            if w not in D and (w not in seen or vw_dist < seen[w]):
                seen[w] = vw_dist
                push(Q,(vw_dist,v,w))
                sigma[w]=0.0
                P[w]=[v]
            elif vw_dist==seen[w]:  # handle equal paths
                sigma[w] += sigma[v]
                P[w].append(v)
    return S,P,sigma

def _accumulate_basic(betweenness,S,P,sigma,s):
    delta=dict.fromkeys(S,0) 
    while S:
        w=S.pop()
        coeff=(1.0+delta[w])/sigma[w]
        for v in P[w]:
            delta[v] += sigma[v]*coeff
        if w != s:
            betweenness[w]+=delta[w]
    return betweenness

def _accumulate_endpoints(betweenness,S,P,sigma,s):
    betweenness[s]+=len(S)-1
    delta=dict.fromkeys(S,0) 
    while S:
        w=S.pop()
        coeff=(1.0+delta[w])/sigma[w]
        for v in P[w]:
            delta[v] += sigma[v]*coeff
        if w != s:
            betweenness[w] += delta[w]+1
    return betweenness

def _accumulate_edges(betweenness,S,P,sigma,s):
    delta=dict.fromkeys(S,0) 
    while S:
        w=S.pop()
        coeff=(1.0+delta[w])/sigma[w]
        for v in P[w]:
            c=sigma[v]*coeff
            if (v,w) not in betweenness:
                betweenness[(w,v)]+=c
            else:
                betweenness[(v,w)]+=c
            delta[v]+=c
        if w != s:
            betweenness[w]+=delta[w]
    return betweenness

def _rescale(betweenness,normalized,directed=False):
    if normalized is True:
        order=len(betweenness)
        if order <=2:
            scale=None  # no normalization b=0 for all nodes
        else:
            scale=1.0/((order-1)*(order-2))
    else: # rescale by 2 for undirected graphs
        if not directed:
            scale=1.0/2.0
        else:
            scale=None
    if scale is not None:
        for v in betweenness:
            betweenness[v] *= scale
    return betweenness