File: betweenness_subset.py

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (236 lines) | stat: -rw-r--r-- 7,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
Betweenness centrality measures for subsets of nodes.

"""
#    Copyright (C) 2004-2010 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""

__all__ = ['betweenness_centrality_subset',
           'edge_betweenness_centrality_subset',
           'betweenness_centrality_source']

import networkx as nx

from networkx.algorithms.centrality.betweenness import\
    _single_source_dijkstra_path_basic as dijkstra
from networkx.algorithms.centrality.betweenness import\
    _single_source_shortest_path_basic as shortest_path


def betweenness_centrality_subset(G,sources,targets,
                                  normalized=False,
                                  weighted_edges=False):
    """Compute betweenness centrality for nodes.

    Betweenness centrality of a node is the fraction of all shortest 
    paths that pass through that node.

    Parameters
    ----------
    G : graph
      A networkx graph 

    sources: list of nodes
      Nodes to use as sources for shortest paths in betweenness

    targets: list of nodes
      Nodes to use as targets for shortest paths in betweenness

    normalized : bool, optional
      If True the betweenness values are normalized by
      b=b/(n-1)(n-2) where n is the number of nodes in G.
       
    weighted_edges : bool, optional
      Consider the edge weights in determining the shortest paths.
      The edge weights must be greater than zero.
      If False, all edge weights are considered equal.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with betweenness centrality as the value.

    See Also
    --------
    edge_betweenness_centrality
    load_centrality

    Notes
    -----
    The basic algorithm is from Ulrik Brandes [1]_.

    For weighted graphs the edge weights must be greater than zero.
    Zero edge weights can produce an infinite number of equal length 
    paths between pairs of nodes.

    The normalization might seem a little strange but it is the same
    as in betweenness_centrality() and is designed to make
    betweenness_centrality(G) be the same as
    betweenness_centrality_subset(G,sources=G.nodes(),targets=G.nodes()).

    
    References
    ----------
    .. [1]  A Faster Algorithm for Betweenness Centrality.
       Ulrik Brandes, 
       Journal of Mathematical Sociology 25(2):163-177, 2001.
       http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
    """
    b=dict.fromkeys(G,0.0) # b[v]=0 for v in G
    for s in sources:
        # single source shortest paths
        if weighted_edges:  # use Dijkstra's algorithm
            S,P,sigma=dijkstra(G,s)
        else:  # use BFS
            S,P,sigma=shortest_path(G,s)
        b=_accumulate_subset(b,S,P,sigma,s,targets)
    b=_rescale(b,normalized=normalized,directed=G.is_directed())
    return b


def edge_betweenness_centrality_subset(G,sources,targets,
                                       normalized=False,
                                       weighted_edges=False):
    """Compute betweenness centrality for edges.

    Betweenness centrality of an edge is the fraction of all shortest 
    paths that pass through that edge.

    Parameters
    ----------
    G : graph
      A networkx graph 

    sources: list of nodes
      Nodes to use as sources for shortest paths in betweenness

    targets: list of nodes
      Nodes to use as targets for shortest paths in betweenness

    normalized : bool, optional
      If True the betweenness values are normalized by 
      b=b/(n-1)(n-2) where n is the number of nodes in G.
       
    weighted_edges : bool, optional
      Consider the edge weights in determining the shortest paths.
      The edge weights must be greater than zero.
      If False, all edge weights are considered equal.

    Returns
    -------
    edges : dictionary
       Dictionary of edges with Betweenness centrality as the value.
        
    See Also
    --------
    betweenness_centrality
    edge_load

    Notes
    -----
    The basic algorithm is from Ulrik Brandes [1]_.

    For weighted graphs the edge weights must be greater than zero.
    Zero edge weights can produce an infinite number of equal length 
    paths between pairs of nodes.

    The normalization might seem a little strange but it is the same
    as in edge_betweenness_centrality() and is designed to make
    edge_betweenness_centrality(G) be the same as
    edge_betweenness_centrality_subset(G,sources=G.nodes(),targets=G.nodes()).

    References
    ----------
    .. [1]  A Faster Algorithm for Betweenness Centrality.
       Ulrik Brandes, 
       Journal of Mathematical Sociology 25(2):163-177, 2001.
       http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
    """

    b=dict.fromkeys(G,0.0) # b[v]=0 for v in G
    b.update(dict.fromkeys(G.edges(),0.0)) # b[e] for e in G.edges()
    for s in sources:
        # single source shortest paths
        if weighted_edges:  # use Dijkstra's algorithm
            S,P,sigma=dijkstra(G,s)
        else:  # use BFS
            S,P,sigma=shortest_path(G,s)
        b=_accumulate_edges_subset(b,S,P,sigma,s,targets)
    for n in G: # remove nodes to only return edges 
        del b[n]
    b=_rescale(b,normalized=normalized,directed=G.is_directed())
    return b

# obsolete name
def betweenness_centrality_source(G,normalized=True,
                                  weighted_edges=False,
                                  sources=None):
    import warnings
    warnings.warn("""betweenness_centrality_source() is deprecated, 
use betweenness_centrality_subset()""", 
                  DeprecationWarning)

    if sources is None:
        sources=G.nodes()
    targets=G.nodes()
    return betweenness_centrality_subset(G,sources,targets,
                                       normalized=normalized,
                                       weighted_edges=weighted_edges)


def _accumulate_subset(betweenness,S,P,sigma,s,targets):
    delta=dict.fromkeys(S,0) 
    target_set=set(targets)
    while S:
        w=S.pop()
        for v in P[w]:
            if w in target_set:
                delta[v]+=(sigma[v]/sigma[w])*(1.0+delta[w])
            else:
                delta[v]+=delta[w]/len(P[w])
        if w != s:
            betweenness[w]+=delta[w]
    return betweenness

def _accumulate_edges_subset(betweenness,S,P,sigma,s,targets):
    delta=dict.fromkeys(S,0) 
    target_set=set(targets)
    while S:
        w=S.pop()
        for v in P[w]:
            if w in target_set:
                c=(sigma[v]/sigma[w])*(1.0+delta[w])
            else:
                c=delta[w]/len(P[w])
            if (v,w) not in betweenness:
                betweenness[(w,v)]+=c
            else:
                betweenness[(v,w)]+=c
            delta[v]+=c
        if w != s:
            betweenness[w]+=delta[w]
    return betweenness



def _rescale(betweenness,normalized,directed=False):
    if normalized is True:
        order=len(betweenness)
        if order <=2:
            scale=None  # no normalization b=0 for all nodes
        else:
            scale=1.0/((order-1)*(order-2))
    else: # rescale by 2 for undirected graphs
        if not directed:
            scale=1.0/2.0
        else:
            scale=None
    if scale is not None:
        for v in betweenness:
            betweenness[v] *= scale
    return betweenness