1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
"""
Current-flow betweenness centrality measures.
"""
# Copyright (C) 2010 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
__all__ = ['current_flow_betweenness_centrality',
'edge_current_flow_betweenness_centrality']
import networkx as nx
def current_flow_betweenness_centrality(G,normalized=True):
"""Compute current-flow betweenness centrality for nodes.
Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.
Current-flow betweenness centrality is also known as
random-walk betweenness centrality [2]_.
Parameters
----------
G : graph
A networkx graph
normalized : bool, optional
If True the betweenness values are normalized by b=b/(n-1)(n-2) where
n is the number of nodes in G.
Returns
-------
nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.
See Also
--------
betweenness_centrality
edge_betweenness_centrality
edge_current_flow_betweenness_centrality
Notes
-----
The algorithm is from Brandes [1]_.
If the edges have a 'weight' attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.
References
----------
.. [1] Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
.. [2] A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).
"""
try:
import numpy as np
except ImportError:
raise ImportError(
"""current_flow_betweenness_centrality() requires NumPy
http://scipy.org/""")
if G.is_directed():
raise nx.NetworkXError(\
"current_flow_betweenness_centrality() not defined for digraphs.")
if not nx.is_connected(G):
raise nx.NetworkXError("Graph not connected.")
betweenness=dict.fromkeys(G,0.0) # b[v]=0 for v in G
F=_compute_F(G) # Current-flow matrix
m,n=F.shape # m edges and n nodes
for (ei,(s,t)) in enumerate(G.edges_iter()):
# ei is index of edge
Fe=F[ei,:] # ei row of F
# rank of F[ei,v] in row Fe sorted in non-increasing order
pos=dict(zip(Fe.argsort()[::-1],xrange(1,n+1)))
for i in xrange(n):
betweenness[s]+=(i+1-pos[i])*Fe[i]
betweenness[t]+=(n-i-pos[i])*Fe[i]
if normalized:
nb=(n-1.0)*(n-2.0) # normalization factor
else:
nb=2.0
for i,vi in enumerate(G): # map integers to nodes
betweenness[vi]=(betweenness[vi]-i)*2.0/nb
return betweenness
def edge_current_flow_betweenness_centrality(G,normalized=True):
"""Compute current-flow betweenness centrality for edges.
Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.
Current-flow betweenness centrality is also known as
random-walk betweenness centrality [2]_.
Parameters
----------
G : graph
A networkx graph
normalized : bool, optional
If True the betweenness values are normalized by b=b/(n-1)(n-2) where
n is the number of nodes in G.
Returns
-------
nodes : dictionary
Dictionary of edge tuples with betweenness centrality as the value.
See Also
--------
betweenness_centrality
edge_betweenness_centrality
current_flow_betweenness_centrality
Notes
-----
The algorithm is from Brandes [1]_.
If the edges have a 'weight' attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.
References
----------
.. [1] Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
.. [2] A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).
"""
from itertools import izip
try:
import numpy as np
except ImportError:
raise ImportError(
"""current_flow_betweenness_centrality() requires NumPy
http://scipy.org/""")
if G.is_directed():
raise nx.NetworkXError(\
"current_flow_closeness_centrality() not defined for digraphs.")
if not nx.is_connected(G):
raise nx.NetworkXError("Graph not connected.")
betweenness=(dict.fromkeys(G.edges(),0.0))
F=_compute_F(G) # Current-flow matrix
m,n=F.shape # m edges and n nodes
if normalized:
nb=(n-1.0)*(n-2.0) # normalization factor
else:
nb=2.0
for (ei,e) in enumerate(G.edges_iter()):
# ei is index of edge
Fe=F[ei,:] # ei row of F
# rank of F[ei,v] in row Fe sorted in non-increasing order
pos=dict(zip(Fe.argsort()[::-1],xrange(1,n+1)))
for i in xrange(n):
betweenness[e]+=(i+1-pos[i])*Fe[i]
betweenness[e]+=(n-i-pos[i])*Fe[i]
betweenness[e]/=nb
return betweenness
def _compute_C(G):
"""Inverse of Laplacian."""
try:
import numpy as np
except ImportError:
raise ImportError(
"""current_flow_betweenness_centrality() requires NumPy
http://scipy.org/""")
L=nx.laplacian(G) # use ordering of G.nodes()
# remove first row and column
LR=L[1:,1:]
LRinv=np.linalg.inv(LR)
C=np.zeros(L.shape)
C[1:,1:]=LRinv
return C
def _compute_F(G):
"""Current flow matrix."""
try:
import numpy as np
except ImportError:
raise ImportError(
"""current_flow_betweenness_centrality() requires NumPy
http://scipy.org/""")
C=np.asmatrix(_compute_C(G))
n=G.number_of_nodes()
m=G.number_of_edges()
B=np.zeros((n,m))
# use G.nodes() and G.edges() ordering of edges for B
mapping=dict(zip(G,xrange(n))) # map nodes to integers
for (ei,(v,w,d)) in enumerate(G.edges_iter(data=True)):
c=d.get('weight',1.0)
vi=mapping[v]
wi=mapping[w]
B[vi,ei]=c
B[wi,ei]=-c
return np.asarray(B.T*C)
|