File: current_flow_betweenness_subset.py

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (236 lines) | stat: -rw-r--r-- 7,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
Current-flow betweenness centrality measures for subsets of nodes.

"""
#    Copyright (C) 2010 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""

__all__ = ['current_flow_betweenness_centrality_subset',
           'edge_current_flow_betweenness_centrality_subset']

import networkx as nx

def current_flow_betweenness_centrality_subset(G,sources,targets,
                                               normalized=True):
    """Compute current-flow betweenness centrality for subsets nodes.

    Current-flow betweenness centrality uses an electrical current
    model for information spreading in contrast to betweenness
    centrality which uses shortest paths.

    Current-flow betweenness centrality is also known as
    random-walk betweenness centrality [2]_.

    Parameters
    ----------
    G : graph
      A networkx graph 

    sources: list of nodes
      Nodes to use as sources for current

    targets: list of nodes
      Nodes to use as sinks for current

    normalized : bool, optional
      If True the betweenness values are normalized by b=b/(n-1)(n-2) where
      n is the number of nodes in G.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with betweenness centrality as the value.
        
    See Also
    --------
    betweenness_centrality
    edge_betweenness_centrality
    edge_current_flow_betweenness_centrality

    Notes
    -----
    The algorithm is from Brandes [1]_.

    If the edges have a 'weight' attribute they will be used as 
    weights in this algorithm.  Unspecified weights are set to 1.

    References
    ----------
    .. [1] Centrality Measures Based on Current Flow. 
       Ulrik Brandes and Daniel Fleischer,
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). 
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005. 
       http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

    .. [2] A measure of betweenness centrality based on random walks,
       M. E. J. Newman, Social Networks 27, 39-54 (2005).
    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError(
            """current_flow_betweenness_centrality_subset() requires NumPy 
http://scipy.org/""")

    if G.is_directed():
        raise nx.NetworkXError(\
            "current_flow_betweenness_centrality_subset() not defined for digraphs.")
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    betweenness=dict.fromkeys(G,0.0) # b[v]=0 for v in G
    F=_compute_F(G) # Current-flow matrix
    m,n=F.shape # m edges and n nodes
    mapping=dict(zip(G,xrange(n)))  # map nodes to integers
    for (ei,e) in enumerate(G.edges_iter()): 
        u,v=e
        # ei is index of edge
        Fe=F[ei,:] # ei row of F
        for s in sources:
            i=mapping[s]
            for t in targets:
                j=mapping[t]
                betweenness[u]+=0.5*np.abs(Fe[i]-Fe[j]) 
                betweenness[v]+=0.5*np.abs(Fe[i]-Fe[j]) 
    if normalized:
        nb=(n-1.0)*(n-2.0) # normalization factor
    else:
        nb=2.0
    for v in G:
        betweenness[v]=betweenness[v]/nb+1.0/(2-n)
    return betweenness            


def edge_current_flow_betweenness_centrality_subset(G,sources,targets,
                                                    normalized=True):
    """Compute edge current-flow betweenness centrality for subsets
    of nodes.

    Current-flow betweenness centrality uses an electrical current
    model for information spreading in contrast to betweenness
    centrality which uses shortest paths.

    Current-flow betweenness centrality is also known as
    random-walk betweenness centrality [2]_.

    Parameters
    ----------
    G : graph
      A networkx graph 

    sources: list of nodes
      Nodes to use as sources for current

    targets: list of nodes
      Nodes to use as sinks for current

    normalized : bool, optional
      If True the betweenness values are normalized by b=b/(n-1)(n-2) where
      n is the number of nodes in G.

    Returns
    -------
    nodes : dictionary
       Dictionary of edge tuples with betweenness centrality as the value.
        
    See Also
    --------
    betweenness_centrality
    edge_betweenness_centrality
    current_flow_betweenness_centrality

    Notes
    -----
    The algorithm is from Brandes [1]_.

    If the edges have a 'weight' attribute they will be used as 
    weights in this algorithm.  Unspecified weights are set to 1.

    References
    ----------
    .. [1] Centrality Measures Based on Current Flow. 
       Ulrik Brandes and Daniel Fleischer,
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). 
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005. 
       http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

    .. [2] A measure of betweenness centrality based on random walks, 
       M. E. J. Newman, Social Networks 27, 39-54 (2005).
    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError(
            """current_flow_betweenness_centrality_subset() requires NumPy 
http://scipy.org/""")

    if G.is_directed():
        raise nx.NetworkXError(\
            "edge_current_flow_closeness_centrality_subset() not defined for digraphs.")
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    betweenness=(dict.fromkeys(G.edges(),0.0)) 
    F=_compute_F(G) # Current-flow matrix
    m,n=F.shape # m edges and n nodes
    if normalized:
        nb=(n-1.0)*(n-2.0) # normalization factor
    else:
        nb=2.0
    mapping=dict(zip(G,xrange(n)))  # map nodes to integers
    for (ei,e) in enumerate(G.edges_iter()): 
        # ei is index of edge
        Fe=F[ei,:] # ei row of F
        for s in sources:
            i=mapping[s]
            for t in targets:
                j=mapping[t]
                betweenness[e]+=0.5*np.abs(Fe[i]-Fe[j])
        betweenness[e]/=nb
    return betweenness            



def _compute_C(G):
    """Inverse of Laplacian."""
    try:
        import numpy as np
    except ImportError:
        raise ImportError(
            """current_flow_betweenness_centrality_subset() requires NumPy 
http://scipy.org/""")

    L=nx.laplacian(G) # use ordering of G.nodes() 
    # remove first row and column
    LR=L[1:,1:]
    LRinv=np.linalg.inv(LR)
    C=np.zeros(L.shape)
    C[1:,1:]=LRinv
    return C

def _compute_F(G):
    """Current flow matrix."""
    try:
        import numpy as np
    except ImportError:
        raise ImportError(
            """current_flow_betweenness_centrality_subset() requires NumPy 
http://scipy.org/""")
    C=np.asmatrix(_compute_C(G))
    n=G.number_of_nodes()
    m=G.number_of_edges()
    B=np.zeros((n,m))
    # use G.nodes() and G.edges() ordering of edges for B  
    mapping=dict(zip(G,xrange(n)))  # map nodes to integers
    for (ei,(v,w,d)) in enumerate(G.edges_iter(data=True)): 
        c=d.get('weight',1.0)
        vi=mapping[v]
        wi=mapping[w]
        B[vi,ei]=c
        B[wi,ei]=-c
    return np.asarray(B.T*C)