1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
Centrality
==========
>>> from networkx import *
>>> K=krackhardt_kite_graph()
>>> P3=path_graph(3)
>>> P4=path_graph(4)
>>> K5=complete_graph(5)
>>> C4=cycle_graph(4)
>>> T=balanced_tree(r=2, h=2)
>>> Gb = Graph()
>>> Gb.add_edges_from([(0,1), (0,2), (1,3), (2,3), (2,4), (4,5), (3,5)])
>>> F=Graph() # Florentine families
>>> F.add_edge('Acciaiuoli','Medici')
>>> F.add_edge('Castellani','Peruzzi')
>>> F.add_edge('Castellani','Strozzi')
>>> F.add_edge('Castellani','Barbadori')
>>> F.add_edge('Medici','Barbadori')
>>> F.add_edge('Medici','Ridolfi')
>>> F.add_edge('Medici','Tornabuoni')
>>> F.add_edge('Medici','Albizzi')
>>> F.add_edge('Medici','Salviati')
>>> F.add_edge('Salviati','Pazzi')
>>> F.add_edge('Peruzzi','Strozzi')
>>> F.add_edge('Peruzzi','Bischeri')
>>> F.add_edge('Strozzi','Ridolfi')
>>> F.add_edge('Strozzi','Bischeri')
>>> F.add_edge('Ridolfi','Tornabuoni')
>>> F.add_edge('Tornabuoni','Guadagni')
>>> F.add_edge('Albizzi','Ginori')
>>> F.add_edge('Albizzi','Guadagni')
>>> F.add_edge('Bischeri','Guadagni')
>>> F.add_edge('Guadagni','Lamberteschi')
Load
----
>>> b=load_centrality(K5)
>>> for v in K5:
... print "%0.2d %5.3f"%(v,b[v])
00 0.000
01 0.000
02 0.000
03 0.000
04 0.000
>>> b=load_centrality(P3)
>>> for v in P3:
... print "%0.2d %5.3f"%(v,b[v])
00 0.000
01 1.000
02 0.000
>>> b=load_centrality(K)
>>> for v in K:
... print "%0.2d %5.3f"%(v,b[v])
00 0.023
01 0.023
02 0.000
03 0.102
04 0.000
05 0.231
06 0.231
07 0.389
08 0.222
09 0.000
>>> b=load_centrality(F)
>>> for v in sorted(F):
... print "%-13s %5.3f"%(v,b[v])
Acciaiuoli 0.000
Albizzi 0.211
Barbadori 0.093
Bischeri 0.104
Castellani 0.055
Ginori 0.000
Guadagni 0.251
Lamberteschi 0.000
Medici 0.522
Pazzi 0.000
Peruzzi 0.022
Ridolfi 0.117
Salviati 0.143
Strozzi 0.106
Tornabuoni 0.090
Unnormalized
>>> b=load_centrality(K5,normalized=False)
>>> for v in K5:
... print "%0.2d %5.3f"%(v,b[v])
00 0.000
01 0.000
02 0.000
03 0.000
04 0.000
>>> b=load_centrality(P3,normalized=False)
>>> for v in P3:
... print "%0.2d %5.3f"%(v,b[v])
00 0.000
01 2.000
02 0.000
>>> b=load_centrality(K,normalized=False)
>>> for v in K:
... print "%0.2d %5.3f"%(v,b[v])
00 1.667
01 1.667
02 0.000
03 7.333
04 0.000
05 16.667
06 16.667
07 28.000
08 16.000
09 0.000
>>> b=load_centrality(F,normalized=False)
>>> for v in sorted(F):
... print "%-13s %5.3f"%(v,b[v])
Acciaiuoli 0.000
Albizzi 38.333
Barbadori 17.000
Bischeri 19.000
Castellani 10.000
Ginori 0.000
Guadagni 45.667
Lamberteschi 0.000
Medici 95.000
Pazzi 0.000
Peruzzi 4.000
Ridolfi 21.333
Salviati 26.000
Strozzi 19.333
Tornabuoni 16.333
Difference Between Load and Betweenness
---------------------------------------
The smallest graph that shows the difference between
load and betweenness is G=ladder_graph(3) (Graph B below)
Graph A and B are from Tao Zhou, Jian-Guo Liu, Bing-Hong Wang:
Comment on ``Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality". http://arxiv.org/pdf/physics/0511084
Notice that unlike here, their calculation adds to 1 to the betweennes
of every node i for every path from i to every other node. This is
exactly what it should be, based on Eqn. (1) in their paper: the eqn
is B(v) = \sum_{s\neq t, s\neq v}{\frac{\sigma_{st}(v)}{\sigma_{st}}},
therefore, they allow v to be the target node.
We follow Brandes 2001, who follows Freeman 1977 that make the sum for
betweenness of v exclude paths where v is either the source or target
node. To agree with their numbers, we must additionally, remove edge
(4,8) from the graph, see AC example following (there is a mistake
in the figure in their paper - personal communication).
>>> A = Graph()
>>> A.add_edges_from([(0,1), (1,2), (1,3), (2,4), (3,5), (4,6), (4,7), (4,8), (5,8), (6,9), (7,9), (8,9)])
>>> B = Graph() # ladder_graph(3)
>>> B.add_edges_from([(0,1), (0,2), (1,3), (2,3), (2,4), (4,5), (3,5)])
>>> b = load_centrality(B,normalized=False)
>>> for v in B:
... print "%0.2d %5.3f"%(v,b[v])
00 1.750
01 1.750
02 6.500
03 6.500
04 1.750
05 1.750
Edge Load
---------
>>> b = edge_load(C4)
>>> for v in C4.edges():
... print "(%0.2d, %0.2d) %5.3f"%(v[0], v[1], b[v])
(00, 01) 6.000
(00, 03) 6.000
(01, 02) 6.000
(02, 03) 6.000
>>> b = edge_load(P4)
>>> for v in P4.edges():
... print "(%0.2d, %0.2d) %5.3f"%(v[0], v[1], b[v])
(00, 01) 6.000
(01, 02) 8.000
(02, 03) 6.000
>>> b = edge_load(K5)
>>> for v in K5.edges():
... print "(%0.2d, %0.2d) %5.3f"%(v[0], v[1], b[v])
(00, 01) 5.000
(00, 02) 5.000
(00, 03) 5.000
(00, 04) 5.000
(01, 02) 5.000
(01, 03) 5.000
(01, 04) 5.000
(02, 03) 5.000
(02, 04) 5.000
(03, 04) 5.000
>>> b = edge_load(T)
>>> for v in T.edges():
... print "(%0.2d, %0.2d) %5.3f"%(v[0], v[1], b[v])
(00, 01) 24.000
(00, 02) 24.000
(01, 03) 12.000
(01, 04) 12.000
(02, 05) 12.000
(02, 06) 12.000
|